Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "zeolite Na-P1" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Sorption of oil products on the synthetic zeolite granules
Autorzy:
Król, Magdalena
Rożek, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/127613.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Mineralogiczne
Tematy:
sorbent
adsorption
oil pollution
zeolite Na-P1
expanded glass
Opis:
In this work, lightweight granules of zeolite Na-P1 based on expanded glass aggregates were synthesized for the application in oil products’ sorption. The sorption of gasoline, diesel and silicone oil tests were also conducted for raw expanded glass, zeolite A, clinoptilolite and mineral sorbent available at a fuel station. All sorbents were also characterized in terms of the phase composition (X-ray diffraction) and structure (infrared spectroscopy). The zeolite Na-P1 granules achieved the highest values of sorption capacities (1.8, 2.1 and 2.6 g/g, respectively), which makes them promising materials for oils’ removal.
Źródło:
Mineralogia; 2020, 51, 1; 1-7
1899-8291
1899-8526
Pojawia się w:
Mineralogia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Changes in the Textural Parameters of Fly Ash-Derived Na-P1 Zeolite During Compaction Processes
Autorzy:
Panek, Rafał
Wdowin, Magdalena
Bandura, Lidia
Wisła-Walsh, Ewa
Gara, Paweł
Franus, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/127564.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Mineralogiczne
Tematy:
Na-P1
binders
tableting
briquetting
extrusion
textural parameters
Opis:
This paper presents the possibility of receiving the granular forms of a zeolitic material of the Na-P1 type obtained from high-calcium fly ash in a semi-technical scale by means of three compacting techniques. The compaction process was carried out using cement, molasses and water glass as binders. Each of the proposed compacting methods affected the textural parameters of the obtained granular zeolite forms, as well as the binders used. In comparison to the other binders it was found that the cement binder had the smaller impact on the values of the textural parameters of the obtained compacted zeolite forms. The surface area for the zeolite Na-P1 was 98.49 m2•g-1, for the cement as a binder was 69.23 m2•g-1, for the molasses was 52.70 m2•g-1 and for the water glass was 40.87 m2•g-1. For this reason, the briquetting and extruding tests were carried out using cement as a binder.
Źródło:
Mineralogia; 2017, 48, 1/4; 3-22
1899-8291
1899-8526
Pojawia się w:
Mineralogia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Na-P1 zeolite synthesis and its crystalline structure ripening through hydrothermal process using coal combustion by-products as substrates
Autorzy:
Kunecki, P.
Panek, R.
Wdowin, M.
Powiązania:
https://bibliotekanauki.pl/articles/184573.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
energy industry
environment pollutant
earth ecosystem
Opis:
Energy industry sector is one of the major environment pollutants. This branch also generates significant amounts of by-products such as slugs, slug-ash mixtures, ashes and microspheres, which can be very harmful for the earth ecosystems. Statistically the microspheres (MIC) constitute from 0.6% to 2.5% of the total amount of post combustion wastes. MIC occurs mainly in fly ashes (less often in slugs) as the smallest, hollow, spherical particles. MIC is composed mainly of crystalline and amorphous aluminosilicate phases. The combustion conditions have strong influence on MIC composition. Mineral and chemical composition of MIC is very similar to F type of fly ashes; consequently there is a possibility to use them as substrates for zeolite synthesis. Zeolites are minerals from microporous, aluminosilicate group (Szala et al. 2015). Among others, they are characterized by specific channels and chambers occurrence in their structure, which results in a number of important features like: ion exchange, sorption, molecular sieve or catalytic properties. This is the reason for wide use of zeolites in numerous industrial sectors (Ahmaruzzaman 2010). The aim of this study is a synthesis of Na-P1 zeolite at semi-technical scale by conversion of microspheres under hydrothermal conditions in an alkaline medium. This study involves also research of Na-P1 zeolite structure ripening in order to optimize the synthesis conditions. Microspheres from Stalowa Wola Power Plant (Poland) were used as a substrate. For the synthesis of Na-P1 phase the following conditions were applied: 90 dm 3 of water, 15 kg of microsphere, 11 kg of sodium hydroxide (3 mol/dm 3 ), temperature: 80°C, and reaction time up to 26 h (Franus et al. 2014). The zeolite conversion was performed on semi-technical scale installation (Wdowin et al. 2014). During the conversion, samples were collected from the reactor after 2, 4, 6, 10, 14, 26 hours. To investigate the influence of time for zeolitization process efficiency these samples were analyzed in terms of chemical and mineral composition, structural and textural properties. The main attention was paid to the evolution of the Na-P1 unit cell parameters observed as a function of time (calculations and models were performed for every sample). The phase’s composition was determined with powder X-ray diffraction (XRD) method using a PANalytical X’pert MPD diffractometer (with a PW 3050/60 goniometer), Cu lamp, and a graphite monochromator. The analysis was performed within the angle range of 5–65 2θ. PANalytical X’Pert Highscore software was used to process the diffraction data. The identification of mineral phases was based on the PDF-2 release 2010 database formalized by the ICD and IZA-SC Database of Zeolite Structures. The experimental calculations of the unit cell parameters were performed using UnitCell software. The spatial model of Na-P1 zeolite cell was prepared using Mercury 3.7 Windows software. The morphological forms and the chemical composition of the main mineral components were determined with scanning electron microscope (SEM) FEI Quanta 250 FEG equipped with the SE detector and a system of chemical composition analysis based on energy dispersive X-ray-EDS of EDAX company. N 2 adsorption-desorption measurements were carried out at 77 K using ASAP 2020 volumetric adsorption analyzer (Micromeritics). The specific surface areas (S BET ) of the samples were evaluated using the standard Brunauer–Emmett–Teller (BET) method for nitrogen adsorption data in the range of relative pressure p / p 0 from 0.06 to 0.3. The total pore volumes were estimated from single-point adsorption at a relative pressure of 0.98. XRD data indicates that main phases in microsphere are amorphous aluminosilicate glass, mullite and quartz. The obtained product is dominated by Na-P1 phase. Experimental calculations of cell parameters and fabricated models confirm crystallographic similarity to Na-P1 pattern. Noteworthy is the fact that the unit cell parameters depend on reaction time. Calculations indicate that the cell parameters (walls length: a , b , c and cell volume) increase with time towards to pattern values. This phenomenon may be interpreted as a ripening of crystalline structure. An in-depth look at this matter can lead to better estimation of synthesis conditions, which have a significant impact to the total cost of zeolites production – especially at a larger scale. SEM shows progressive dissolution (also as a function of time) of aluminosilicate glass in favor of crystallization of zeolite phase. EDS analysis confirms similarity of chemical composition of the obtained samples to a standard Na-P1 zeolite. Calculated textural properties indicate increase of S BET with the reaction time. Simultaneously, the average pore diameters decrease. The S BET of synthetized Na-P1 was 4.62 m 2 /g after 2 h but it increased to 47.92 m 2 /g after 26 h. This is an effect of growing contribution of zeolite phase in relation to the initial substrates in the sample during the reaction time. The experimental conditions allowed synthesizing Na-P1 zeolite from microsphere particles in the prototype installation. Zeolitization process strongly influences the textural properties by increasing S BET and improving pore structure. The microsphere from Stalowa Wola Power Plant is a promising material for the synthesis of Na-P1 zeolite in the prototype installation. Still, the reaction parameters should be reconsidered, basing on the obtained results, in order to reduce the cost of the zeolite production as much as possible. This is required before proceeding to the full technical production scale. To observe increase of zeolite amount in entirety synthesis batch (and to link it with cell behavior) the Rietveld analysis will be provided.
Źródło:
Geology, Geophysics and Environment; 2016, 42, 1; 90-91
2299-8004
2353-0790
Pojawia się w:
Geology, Geophysics and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Właściwości kruszyw lekkich modyfikowanych zużytymi sorbentami mineralnymi
Properties of the lightweight aggregate modified with the spent zeolite sorbents after sorption of diesel fuel
Autorzy:
Franus, M.
Bandura, L
Powiązania:
https://bibliotekanauki.pl/articles/391284.pdf
Data publikacji:
2014
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
klinoptylolit
Na-P1
substancje ropopochodne
kruszywo lekkie
clinoptilolite
petroleum substances
lightweight aggregate
Opis:
W artykule przedstawiono możliwość modyfikacji kruszywa lekkiego zużytymi sorbentami mineralnymi po sorpcji substancji ropopochodnych. Kruszywo otrzymano metodą plastyczną przez wypalenie w temperaturze 1170°C. Oceny właściwości fizycznych i mechanicznych kruszywa dokonano na podstawie parametrów takich jak gęstość właściwa, gęstość objętościowa i nasypowa, porowatość, nasiąkliwość, mrozoodporność oraz wytrzymałość na miażdżenie. Badane właściwości wskazują, że otrzymane kruszywa keramzytowe z dodatkiem zużytych sorbentów spełniają podstawowe wymagania stawiane wobec kruszyw lekkich.
The paper presents the possibility of modification of the lightweight aggregate with mineral sorbents after sorption of petroleum substances. The aggregate is obtained with the plastic method by burning at 1170°C. Evaluation of the physical and mechanical properties was based on the parameters such as specific gravity, bulk density and volumetric density, porosity, water absorption, frost resistance and resistance to crushing. The investigated properties indicate that the resulting lightweight aggregate with the addition of used sorbents meets the basic requirements for the lightweight aggregates used in construction.
Źródło:
Budownictwo i Architektura; 2014, 13, 2; 73-83
1899-0665
Pojawia się w:
Budownictwo i Architektura
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies