Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "truncated moment" wg kryterium: Wszystkie pola


Wyświetlanie 1-6 z 6
Tytuł:
An operator-theoretic approach to truncated moment problems
Autorzy:
Curto, Raúl
Powiązania:
https://bibliotekanauki.pl/articles/1358668.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
We survey recent developments in operator theory and moment problems, beginning with the study of quadratic hyponormality for unilateral weighted shifts, its connections with truncated Hamburger, Stieltjes, Hausdorff and Toeplitz moment problems, and the subsequent proof that polynomially hyponormal operators need not be subnormal. We present a general elementary approach to truncated moment problems in one or several real or complex variables, based on matrix positivity and extension. Together with the construction of a "functional calculus" for the columns of the associated moment matrix, our operator-theoretic approach allows us to obtain existence theorems for the truncated complex moment problem, in case the columns satisfy one of several natural constraints. We also include an application to the Riemann-quadrature problem from numerical analysis.
Źródło:
Banach Center Publications; 1997, 38, 1; 75-104
0137-6934
Pojawia się w:
Banach Center Publications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solution of the Stieltjes truncated matrix moment problem
Autorzy:
Adamyan, V.M.
Tkachenko, I.M.
Powiązania:
https://bibliotekanauki.pl/articles/255081.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Stieltjes power moments
canonical solutions
Nevanlinna's formula
matrix
Opis:
The truncated Stieltjes matrix moment problem consisting in the description of all matrix distributions sigma(t) on [0, infin) with given first 2n + 1 power moments (Cj)nj=0 is solved using known results on the corresponding Hamburger problem for which sigma(t) are defined on (-infin, infin). The criterion of solvability of the Stieltjes problem is given and all its solutions in the non-degenerate case are described by selection of the appropriate solutions among those of the Hamburger problem for the same set of moments. The results on extensions of non-negative operators are used and a purely algebraic algorithm for the solution of both Hamburger and Stieltjes problems is proposed.
Źródło:
Opuscula Mathematica; 2005, 25, 1; 5-24
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some characterizations of a two-parameter Xgamma distribution
Autorzy:
Shakil, M.
Ahsanullah, M.
Powiązania:
https://bibliotekanauki.pl/articles/1031018.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Characterizations
Order Statistics
Record Values
Truncated Moment
Xgamma distribution
Opis:
The objective of this paper is establish some new characterization results of a two-parameter Xgamma distribution. We have first established our proposed characterization results by taking a relation between left truncated moment and failure rate function. Then, we have characterized the two-parameter Xgamma distribution by taking a relation between right truncated moment and reversed failure rate function. Finally, we have characterized it by order statistics and record values.
Źródło:
World Scientific News; 2020, 149; 1-22
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterisation of some generalised continuous distributions by doubly truncated moments
Autorzy:
Athar, Haseeb
Ahsanullah, Mohammad
Ali, Mohd. Almech
Powiązania:
https://bibliotekanauki.pl/articles/2204096.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
truncated moment
characterisation
probability distribution
Weibull
power function
Frechet
Pareto
Lindley
Opis:
The characterisation of probability distribution plays an important role in statistical studies. There are various methods of characterisation available in the literature. The characterisation using truncated moments limits the observations; hence, researchers may save time and cost. In this paper, the characterisation of three general forms of continuous distributions based on doubly truncated moments has been studied. The results are given simply and explicitly. Further, the results have been applied to some well-known continuous distributions.
Źródło:
Operations Research and Decisions; 2023, 33, 1; 1--19
2081-8858
2391-6060
Pojawia się w:
Operations Research and Decisions
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the characterisation of X-Lindley distribution by truncated moments. Properties and application
Autorzy:
Metiri, Farouk
Zeghdoudi, Halim
Ezzebsa, Abdelali
Powiązania:
https://bibliotekanauki.pl/articles/2175833.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
Lindley distribution
X-Lindley distribution
truncated moment
failure rate function
reversed failure rate function
characterisation of distributions
Opis:
Several papers introduce the new distributions and their applications, including, among others, those of Ducey and Gove [7], Grine and Zeghdoudi [8], Chouia et al. [5], Seghier et al. [11], Beghriche and Zeghdoudi [4], where characterisation of a probability distribution plays an important role in statistical science. Several researchers studied the characterisations of probability distributions. For example, Su and Huang [12] study the characterisations of distributions based on expectations. In addition, Nanda [10] studies the characterisations by average residual life and the failure rates of functions of absolutely continuous random variables. Ahmadi et al. [1] consider the estimation based on the left-truncated and right randomly censored data arising from a general family of distributions. On the other hand, Ahsanullah et al. [2, 3] present two characterisations of Lindley distribution, standard normal distribution, t-Student’s, exponentiated exponential, power function, Pareto, and Weibull distributions based on the relation of failure rate, reverse failure rate functions with left and right truncated moments. Recently, Haseeb and Yahia [9] studied truncated moments for two general classes of continuous distributions. In this paper, two characterisations of the X-Lindley distribution, introduced by Chouia and Zeghdoudi [5] have been studied. They are based on the failure, relation of the inverse failure rate functions with the left and right truncated moments, respectively. Section 2 gives some properties of X-Lindley distribution. Section 3 discusses the characterisation of general distribution by left truncated and failure rate function and then right truncated and reverse failure rate function. Section 4 studies the characterisation of X-Lindley distribution by using the relation between left/right truncated moment and failure/reverse failure rate function. Finally, an illustrative example of X-Lindley distribution with other one-parameter distributions is given to show the superiority and flexibility of this model.
Źródło:
Operations Research and Decisions; 2022, 32, 1; 99--109
2081-8858
2391-6060
Pojawia się w:
Operations Research and Decisions
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling of joint signal detection and parameter estimation on the background of non-Gaussian noise
Autorzy:
Palahin, V.
Filipov, V.
Leleko, S.
Ivchenko, O.
Palahina, O.
Powiązania:
https://bibliotekanauki.pl/articles/122532.pdf
Data publikacji:
2015
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
non-Gaussian noise
moment and cumulant representation of random variables
truncated stochastic polynom
polynomial solving rules
Opis:
The paper presents the results and describes the process of modeling of a system of joint signal detection and parameter estimation on the background of a non-Gaussian noise based on moment and cumulant description of random variables, polynomials of Kunchenko and moment quality criterion type of Neyman-Pearson.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2015, 14, 3; 87-94
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies