Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "syntactic parsing" wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
A syntactic component for Vietnamese language processing
Autorzy:
Le-Hong, P.
Roussanaly, A.
Nguyen, T. M. H.
Powiązania:
https://bibliotekanauki.pl/articles/103931.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Instytut Podstaw Informatyki PAN
Tematy:
language
parsing
segmentation
syntactic component
tagging
tree-adjoining grammar
Vietnamese
Opis:
This paper presents the development of a grammar and a syntactic parser for the Vietnamese language. We first discuss the construction of a lexicalized tree-adjoining grammar using an automatic extraction approach. We then present the construction and evaluation of a deep syntactic parser based on the extracted grammar. This is a complete system that produces syntactic structures for Vietnamese sentences. A dependency annotation scheme for Vietnamese and an algorithm for extracting dependency structures from derivation trees are also proposed. This is the first Vietnamese parsing system capable of producing both constituency and dependency analyses. It offers encouraging performance: accuracy of 69.33% and 73.21% for constituency and dependency analysis, respectively.
Źródło:
Journal of Language Modelling; 2015, 3, 1; 145-184
2299-856X
2299-8470
Pojawia się w:
Journal of Language Modelling
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On different approaches to syntactic analysis into bi-lexical dependencies : An empirical comparison of direct, PCFG-based, and HPSG-based parsers
Autorzy:
Ivanova, A.
Oepen, S.
Dridan, R.
Flickinger, D.
Øvrelid, L.
Lapponi, E.
Powiązania:
https://bibliotekanauki.pl/articles/103851.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Instytut Podstaw Informatyki PAN
Tematy:
syntactic dependency parsing
domain variation
Opis:
We compare three different approaches to parsing into syntactic, bilexical dependencies for English: a ‘direct’ data-driven dependenci parser, a statistical phrase structure parser, and a hybrid, ‘deep’ grammar-driven parser. The analyses from the latter two are postconverted to bi-lexical dependencies. Through this ‘reduction’ of All three approaches to syntactic dependency parsers, we determine empirically what performance can be obtained for a common set of dependenci types for English; in- and out-of-domain experimentation ranges over diverse text types. In doing so, we observe what trade-offs apply along three dimensions: accuracy, efficiency, and resilience to domain variation. Our results suggest that the hand-built grammar in one of our parsers helps in both accuracy and cross-domain parsing performance. When evaluated extrinsically in two downstream tasks – negation resolution and semantic dependency parsing – these accuracy gains do sometimes but not always translate into improved end-to-end performance.
Źródło:
Journal of Language Modelling; 2016, 4, 1; 113-144
2299-856X
2299-8470
Pojawia się w:
Journal of Language Modelling
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Partial semantic parsing of sentences by means of grammatically augmented ontology and weighted affix context-free grammar
Autorzy:
Davydov, M.
Lozynska, O.
Pasichnyk, V.
Powiązania:
https://bibliotekanauki.pl/articles/410807.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
grammatically augmented ontology
weighted affix context free grammar
semantic parsing
syntactic parsing
template productions
gramatyka bezkontekstowa
analiza semantyczna
analiza składniowa
produkcja szablonów
Opis:
In spite of the fact that modern statistical and neural net based tools for parsing natural language texts supersede classical approaches there are still areas where generative grammars are used. These are areas where collection of universal parallel corpuses is still in the progress. National sign languages are among them. Ontologies and common sense databases play valuable role in parsing and translation of such languages. Grammatically augmented ontology (GAO) is an ontology extension that links phrases to their meaning. The link is established via special expressions that connect phrase meaning to grammatical and semantical attributes of words that constitute it. The article introduces a new approach to sentence parsing that is based on integration of ontology relations into productions of weighted affix context-free grammar (WACFG). For that reason a new parser for WACFG grammar was developed inspired by works of C.H.A. Koster. Basic properties of WACFG are discussed and the algorithm for selection and convertion of GAO expressions into the set of WACFG productions is provided. The proposed algorithm turned out to be feasible in the context of parsing and translating Ukrainian Spoken and Ukrainian Sign language. The developed approach for mixed semantical and syntactical sentence parsing was tested on the database of sentences from Ukrainian fairy tail by Ivan Franko “Fox Mykyta” where 92 % of sentences were correctly parsed.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2017, 6, 2; 27-32
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generative power of reduction-based parsable ETPR(k) graph grammars for syntactic pattern recognition
Autorzy:
Flasiński, M.
Powiązania:
https://bibliotekanauki.pl/articles/385088.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
syntactic pattern recognition
graph grammar
parsing
rozpoznawanie wzoru syntaktycznego
gramatyka grafowa
Opis:
Further results of research into parsable graph grammars used for syntactic pattern recognition (Pattern Recognition: 21, 623-629 (1988); 23, 765-774 (1990); 24, 12-23 (1991); 26, 1-16 (1993); 43, 2249-2264 (2010), Comput. Vision Graph. Image Process. 47, 1-21 (1989), Computer-Aided Design 27, 403-433 (1995), Theoret. Comp. Sci. 201, 189-231 (1998), Pattern Analysis Applications bf 17, 465-480 (2014)) are presented in the paper. The generative power of reduction-based parsable ETPR(k) graph grammars is investigated. The analogy between the triad of CF - LL(k) - LR(k) string languages and the triad of NLC - ETPL(k) - ETPR(k) graph languages is discussed.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2018, 12, 2; 61-81
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using particle swarm optimization to accurately identify syntactic phrases in free text
Autorzy:
Tambouratzis, G.
Powiązania:
https://bibliotekanauki.pl/articles/91802.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
parsing of natural language
machine translation
syntactically-derived phrasing
particle swarm optimization (PSO)
PSO
parameter optimization
Adaptive PSO
AdPSO
Opis:
The present article reviews the application of Particle Swarm Optimization (PSO) algorithms to optimize a phrasing model, which splits any text into linguistically-motivated phrases. In terms of its functionality, this phrasing model is equivalent to a shallow parser. The phrasing model combines attractive and repulsive forces between neighbouring words in a sentence to determine which segmentation points are required. The extrapolation of phrases in the specific application is aimed towards the automatic translation of unconstrained text from a source language to a target language via a phrase-based system, and thus the phrasing needs to be accurate and consistent to the training data. Experimental results indicate that PSO is effective in optimising the weights of the proposed parser system, using two different variants, namely sPSO and AdPSO. These variants result in statistically significant improvements over earlier phrasing results. An analysis of the experimental results leads to a proposed modification in the PSO algorithm, to prevent the swarm from stagnation, by improving the handling of the velocity component of particles. This modification results in more effective training sequences where the search for new solutions is extended in comparison to the basic PSO algorithm. As a consequence, further improvements are achieved in the accuracy of the phrasing module.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 1; 63-77
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies