- Tytuł:
- Characterizations and decomposition of strongly wright-convex functions of higher order
- Autorzy:
-
Gilányi, A.
Merentes, N.
Nikodem, K.
Páles, Z. - Powiązania:
- https://bibliotekanauki.pl/articles/952781.pdf
- Data publikacji:
- 2015
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
generalized convex function
Wright convex function of higher order
strongly convex function - Opis:
- Motivated by results on strongly convex and strongly Jensen-convex functions by R. Ger and K. Nikodem in [Strongly convex functions of higher order, Nonlinear Anal. 74 (2011), 661-665] we investigate strongly Wright-convex functions of higher order and we prove decomposition and characterization theorems for them. Our decomposition theorem states that a function / is strongly Wright-convex of order n if and only if it is of the form [formula], where g is a (continuous) n-convex function and p is a polynomial function of degree n. This is a counterpart of Ng's decomposition theorem for Wright-convex functions. We also characterize higher order strongly Wright-convex functions via generalized derivatives.
- Źródło:
-
Opuscula Mathematica; 2015, 35, 1; 37-46
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki