Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "statistical analysis of language data" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Wykorzystanie języka R do statystycznej analizy oraz analizy skupień dla danych geochemicznych
Use of R programming language for statistical analysis and cluster analysis of geochemical data
Autorzy:
Janiga, Marek
Powiązania:
https://bibliotekanauki.pl/articles/31348311.pdf
Data publikacji:
2023
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
analiza skupień
metoda k-średnich
metoda hierarchiczna
skład gazu ziemnego
cluster analysis
k-means method
hierarchical method
natural gas composition
Opis:
W zagadnieniach geologii naftowej metody statystyczne są szeroko stosowane w petrografii, petrofizyce, geochemii, geomechanice, geofizyce wiertniczej czy sejsmice, a analiza skupień jest istotna w klasyfikacji skał – wyznaczaniu stref o pewnych własnościach, np. macierzystych lub zbiornikowych. Artykuł prezentuje użycie metod statystycznych, w tym metod analizy skupień, w procesach przetwarzania i analizy dużych zbiorów różnorodnych danych geochemicznych. Do analiz statystycznych wykorzystano literaturowe dane z analiz składu chemicznego i izotopowego gazów ziemnych. Wyniki zawierały skład chemiczny gazów ziemnych oraz skład izotopowy. Zastosowano algorytmy tzw. nienadzorowanego uczenia maszynowego do przeprowadzenia analizy skupień. Grupowania było przeprowadzone dwiema metodami: k-średnich oraz hierarchiczną. Do zobrazowania wyników grupowania metodą k-średnich można wykorzystać dwuwymiarowy wykres (funkcja fviz_cluster języka R). Wymiary na wykresie to efekt analizy głównych składowych (PCA) i są one liniową kombinacją cech (kolumn w tabeli). Wynikiem grupowania metodą hierarchiczną jest wykres nazywany dendrogramem. W artykule dodatkowo zaprezentowano wykresy pudełkowe i histogramy oraz macierz korelacji zawierającą współczynniki korelacji Pearsona. Wszystkie prace wykonano z użyciem języka programowania R. Język R, z wykorzystaniem programu RStudio, jest bardzo wygodnym i szybkim narzędziem do statystycznej analizy danych. Przy użyciu tego języka uzyskanie wymienionych powyżej wykresów, tabeli i danych jest szybkie i stosunkowo łatwe. Wyniki analiz składu gazu wydają się mało zróżnicowane. Mimo to dzięki algorytmom k-średnich i hierarchicznym możliwe było pogrupowanie danych geochemicznych na wyraźnie rozdzielne zespoły. Zarówno wartości składu izotopowego, jak i skład chemiczny pozwalają wyznaczyć grupy, które w inny sposób nie byłyby dostrzegalne.
In petroleum geology, statistical methods are widely used in petrography, petrophysics, geochemistry, geomechanics, well log analysis and seismics, and cluster analysis is important for rock classification – determination of zones with certain properties, e.g., source or reservoir. This paper presents the use of the R language for statistical analysis, including cluster analysis, of large sets of diverse geochemical data. Literature data from analyses of chemical and isotopic composition of natural gases were used for statistical analyses. The results included the chemical composition of the natural gases and the isotopic composition. So-called unsupervised machine learning algorithms were used to perform the cluster analysis. Clustering was performed using two methods: k-means and hierarchical. A two-dimensional graph (function fviz_cluster) can be used to illustrate the results of the k-means clustering. The dimensions in the graph are the result of principal component analysis (PCA) and are a linear combination of the features (columns in the table). The result of hierarchical clustering is a graph called a dendrogram. The paper additionally presents box plots and histograms as well as a correlation matrix containing Pearson correlation coefficients. All work was completed using the programming language R. The R language, using the RStudio software, is a very convenient and fast tool for statistical data analysis. Obtaining the above-mentioned graphs, tables and data is quick and relatively easy, using the R language. The results of the analyses of the composition of the gas appear to have little variation. Nevertheless, thanks to k-means and hierarchical algorithms, it was possible to group the geochemical data into clearly separable groups. Both the isotopic composition values and the chemical composition make it possible to delineate groups that would not otherwise be noticeable.
Źródło:
Nafta-Gaz; 2023, 79, 9; 576-583
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Словник "Исторической Палеи" по списку синодального собрания № 591 второй половины ХV века – глоттометрическая характеристика
Towards a glottometric analysis of the vocabulary of the Historical Palaea
Autorzy:
Илиева, Татяна
Powiązania:
https://bibliotekanauki.pl/articles/682326.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Historical Palaea
glottometric analysis
statistical analysis of language data
Old Bulgarian vocabulary
Preslav Literary School
Old Bulgarian language and literature
Opis:
The present study is an attempt to apply statistical methods in investigating the vocabulary of Old Bulgarian on the basis of lexical material from the Historical Palaea. Tables and charts are used to present a glotometric characterization of the lexical material under study. A comparison is made with data from other Old Bulgarian written monuments that have already been the object of similar studies.
-
Źródło:
Studia Ceranea; 2015, 5; 107-154
2084-140X
2449-8378
Pojawia się w:
Studia Ceranea
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the capacity of survival analysis with the R language
Autorzy:
Krajka, A.
Krawczak, P.
Mlak, R.
Powiązania:
https://bibliotekanauki.pl/articles/106160.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
R language
big data
statistical tools
Opis:
In order to make the big data mining analysis we meet the limit of computer capacity. We concentrate here on such a situation. We describe the problem, test the key fragment of the algorithm and conclude on the possibilities of similar computations.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica; 2014, 14, 3; 22-31
1732-1360
2083-3628
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies