Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "solid varieties" wg kryterium: Wszystkie pola


Wyświetlanie 1-8 z 8
Tytuł:
Nd-solid varieties
Autorzy:
Denecke, Klaus
Glubudom, Prisana
Powiązania:
https://bibliotekanauki.pl/articles/728884.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Non-deterministic hypersubstitution
conjugate pair of additive closure operators
M-solid non-deterministic variety
Opis:
A non-deterministic hypersubstitution maps any operation symbol of a tree language of type τ to a set of trees of the same type, i.e. to a tree language. Non-deterministic hypersubstitutions can be extended to mappings which map tree languages to tree languages preserving the arities. We define the application of a non-deterministic hypersubstitution to an algebra of type τ and obtain a class of derived algebras. Non-deterministic hypersubstitutions can also be applied to equations of type τ. Formally, we obtain two closure operators which turn out to form a conjugate pair of completely additive closure operators. This allows us to use the theory of conjugate pairs of additive closure operators for a characterization of M-solid non-deterministic varieties of algebras. As an application we consider M-solid non-deterministic varieties of semigroups.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2007, 27, 2; 245-262
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pre-strongly solid varieties of commutative semigroups
Autorzy:
Phuapong, Sarawut
Leeratanavalee, Sorasak
Powiązania:
https://bibliotekanauki.pl/articles/728995.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
generalized hypersubstitution
pre-strongly solid variety
commutative semigroup
Opis:
Generalized hypersubstitutions are mappings from the set of all fundamental operations into the set of all terms of the same language do not necessarily preserve the arities. Strong hyperidentities are identities which are closed under the generalized hypersubstitutions and a strongly solid variety is a variety which every its identity is a strong hyperidentity. In this paper we give an example of pre-strongly solid varieties of commutative semigroups and determine the least and the greatest pre-strongly solid variety of commutative semigroups.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2011, 31, 1; 27-45
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Locally finite M-solid varieties of semigroups
Autorzy:
Denecke, Klaus
Pibaljommee, Bundit
Powiązania:
https://bibliotekanauki.pl/articles/728932.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
locally finite variety
finitely based variety
M-solidvariety
Opis:
An algebra of type τ is said to be locally finite if all its finitely generated subalgebras are finite. A class K of algebras of type τ is called locally finite if all its elements are locally finite. It is well-known (see [2]) that a variety of algebras of the same type τ is locally finite iff all its finitely generated free algebras are finite. A variety V is finitely based if it admits a finite basis of identities, i.e. if there is a finite set σ of identities such that V = ModΣ, the class of all algebras of type τ which satisfy all identities from Σ. Every variety which is generated by a finite algebra is locally finite. But there are finite algebras which are not finitely based. For semigroup varieties, Perkins proved that the variety generated by the five-element Brandt-semigroup
$B¹₂ = { \begin{pmatrix} 0 & 0 \\ 0 & 0\end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0\end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0\end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0\end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1\end{pmatrix}}$
is not finitely based ([9], [10]). An identity s ≈ t is called a hyperidentity of a variety V if whenever the operation symbols occurring in s and in t, respectively, are replaced by any terms of V of the appropriate arity, the identity which results, holds in V. A variety V is called solid if every identity of V also holds as a hyperidentity in V. If we apply only substitutions from a set M we speak of M-hyperidentities and M-solid varieties. In this paper we use the theory of M-solid varieties to prove that a type (2) M-solid variety of the form $V = H_{M}Mod{F(x₁,F(x₂,x₃)) ≈ F(F(x₁,x₂),x₃)}$, which consists precisely of all algebras which satisfy the associative law as an M -hyperidentity is locally finite iff the hypersubstitution which maps F to the word x₁x₂x₁ or to the word x₂x₁x₂ belongs to M and that V is finitely based if it is locally finite.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2003, 23, 2; 139-148
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
All regular-solid varieties of idempotent semirings
Autorzy:
Hounnon, Hippolyte
Powiązania:
https://bibliotekanauki.pl/articles/38114594.pdf
Data publikacji:
2017-06-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
semiring
hypersubstitution
regular hypersubstitution
regular hyperidentity
solid variety
regular-solid variety
Opis:
The lattice of all regular-solid varieties of semirings splits in two complete sublattices: the sublattice of all idempotent regular-solid varieties of semirings and the sublattice of all normal regular-solid varieties of semirings. In this paper, we discuss the idempotent part.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2017, 37, 1; 5-12
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Galois correspondence between subvariety lattices and monoids of hpersubstitutions
Autorzy:
Denecke, Klaus
Hyndman, Jennifer
Wismath, Shelly
Powiązania:
https://bibliotekanauki.pl/articles/728896.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hypersubstitutions
hyperidentities
M-hyperidentities
monoids of hypersubstitutions
varieties
solid varieties
M-solid varieties of bands
Galois correspondence
Opis:
Denecke and Reichel have described a method of studying the lattice of all varieties of a given type by using monoids of hypersubstitutions. In this paper we develop a Galois correspondence between monoids of hypersubstitutions of a given type and lattices of subvarieties of a given variety of that type. We then apply the results obtained to the lattice of varieties of bands (idempotent semigroups), and study the complete sublattices of this lattice obtained through the Galois correspondence.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2000, 20, 1; 21-36
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the solidity of general varieties of tree languages
Autorzy:
Steinby, Magnus
Powiązania:
https://bibliotekanauki.pl/articles/728991.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
varieties of tree languages
solid varieties
hypersubstitutions
tree homomorphisms
Opis:
For a class of hypersubstitutions , we define the -solidity of general varieties of tree languages (GVTLs) that contain tree languages over all alphabets, general varieties of finite algebras (GVFAs), and general varieties of finite congruences (GVFCs). We show that if is a so-called category of substitutions, a GVTL is -solid exactly in case the corresponding GVFA, or the corresponding GVFC, is -solid. We establish the solidity status of several known GVTLs with respect to certain categories of substitutions derived from some important classes of tree homomorphisms.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2012, 32, 1; 23-53
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
M-solid generalized non-deterministic varieties
Autorzy:
Lekkoksung, Somsak
Powiązania:
https://bibliotekanauki.pl/articles/728876.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
generalized non-deterministic hypersubstitution
conjugate pair of additive closure operators
M-solid generalized non-deterministic variety
Opis:
A generalized non-deterministic hypersubstitution is a mapping which maps operation symbols of type τ to the set of terms of the same type which does not necessarily preserve the arity. We apply the generalized non-deterministic hypersubstitution to an algebra of type τ and obtain a class of derived algebras of type τ. The generalized non-deterministic hypersubstitutions can be also applied to sets of equations of type τ. We obtain two closure operators which turn out to be a conjugate pair of completely additive closure operators. This allows us to apply the theory of conjugate pairs of additive closure operators to characterize M-solid generalized non-deterministic varieties of algebras.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2016, 36, 1; 25-43
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Complexity of hypersubstitutions and lattices of varieties
Autorzy:
Changphas, Thawhat
Denecke, Klaus
Powiązania:
https://bibliotekanauki.pl/articles/728956.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hypersubstitution
left-seminearring
complexity ofa hypersubstitution
M-solid variety
Opis:
Hypersubstitutions are mappings which map operation symbols to terms. The set of all hypersubstitutions of a given type forms a monoid with respect to the composition of operations. Together with a second binary operation, to be written as addition, the set of all hypersubstitutions of a given type forms a left-seminearring. Monoids and left-seminearrings of hypersubstitutions can be used to describe complete sublattices of the lattice of all varieties of algebras of a given type. The complexity of a hypersubstitution can be measured by the complexity of the resulting terms. We prove that the set of all hypersubstitutions with a complexity greater than a given natural number forms a sub-left-seminearring of the left-seminearring of all hypersubstitutions of the considered type. Next we look to a special complexity measure, the operation symbol count op(t) of a term t and determine the greatest M-solid variety of semigroups where $M = H₂^{op}$ is the left-seminearring of all hypersubstitutions for which the number of operation symbols occurring in the resulting term is greater than or equal to 2. For every n ≥ 1 and for $M = Hₙ^{op}$ we determine the complete lattices of all M-solid varieties of semigroups.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2003, 23, 1; 31-43
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies