Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "skin lesion" wg kryterium: Wszystkie pola


Wyświetlanie 1-12 z 12
Tytuł:
Skin lesion detection using deep learning
Autorzy:
Chandra, Rajit
Hajiarbabi, Mohammadreza
Powiązania:
https://bibliotekanauki.pl/articles/27314216.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
skin lesion
DenseNet
Inception V3
Opis:
Skin lesion can be deadliest if not detected early. Early detection of skin lesion can save many lives. Artificial Intelligence and Machine learning is helping healthcare in many ways and so in the diagnosis of skin lesion. Computer aided diagnosis help clinicians in detecting the cancer. The study was conducted to classify the seven classes of skin lesion using very powerful convolutional neural networks. The two pre trained models i.e DenseNet and Incepton-v3 were employed to train the model and accuracy, precision, recall, f1score and ROCAUC was calculated for every class prediction. Moreover, gradient class activation maps were also used to aid the clinicians in determining what are the regions of image that influence model to make a certain decision. These visualizations are used for explain ability of the model. Experiments showed that DenseNet performed better then Inception V3. Also it was noted that gradient class activation maps highlighted different regions for predicting same class. The main contribution was to introduce medical aided visualizations in lesion classification model that will help clinicians in understanding the decisions of the model. It will enhance the reliability of the model. Also, different optimizers were employed with both models to compare the accuracies.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2022, 16, 3; 56--64
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Skin Lesion Analysis Toward Melanoma Detection Using Deep Learning Techniques
Autorzy:
Sherif, Fatma
Mohamed, Wael A.
Mohra, A.S.
Powiązania:
https://bibliotekanauki.pl/articles/226719.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
melanoma
skin cancer
convolutional neural network
deep learning
Opis:
In the last few years, a great attention was paid to the deep learning Techniques used for image analysis because of their ability to use machine learning techniques to transform input data into high level presentation. For the sake of accurate diagnosis, the medical field has a steadily growing interest in such technology especially in the diagnosis of melanoma. These deep learning networks work through making coarse segmentation, conventional filters and pooling layers. However, this segmentation of the skin lesions results in image of lower resolution than the original skin image. In this paper, we present deep learning based approaches to solve the problems in skin lesion analysis using a dermoscopic image containing skin tumor. The proposed models are trained and evaluated on standard benchmark datasets from the International Skin Imaging Collaboration (ISIC) 2018 Challenge. The proposed method achieves an accuracy of 96.67% for the validation set. The experimental tests carried out on a clinical dataset show that the classification performance using deep learning-based features performs better than the state-of-the-art techniques.
Źródło:
International Journal of Electronics and Telecommunications; 2019, 65, 4; 597-602
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on melanocitic skin lesion infobase enlargment - new facts and concepts
Autorzy:
Chrzanowska, D.
Niemiec, R.
Hippe, Z.
Powiązania:
https://bibliotekanauki.pl/articles/1940553.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska
Tematy:
melanoma
ABK
attributes importance
znamiona melanocytowe
znaczenie atrybutów
Opis:
The melanocytic skin lesion infobase, available at http://synthesis.melanoma.pl (also http://synteza.melanoma.pl, in Polish; referred to as INP) is currently undergoing a complete modification of the way in which (i) the internal synthesis algorithms and (ii) the classification of lesions are performed. We investigated 29 new real images of melanocytic skin lesions, focusing on how humans perform classification based on experience. In conclusion we suggest to add a new color – connected with the depth of a lesion – to the K term of Asymmetry (A),Border (B) and linear Combination of colors and structures (K) method (referred to as ABK).
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2017, 21, 4; 391-393
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Ensemble of Statistical Metadata and CNN Classification of Class Imbalanced Skin Lesion Data
Autorzy:
Nayak, Sachin
Vincent, Shweta
Sumathi, K.
Kumar, Om Prakash
Pathan, Sameena
Powiązania:
https://bibliotekanauki.pl/articles/2055258.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
classification
Convolutional Neural Networks
Ensemble Learning
machine learning
metadata
Opis:
Skin Cancer is one of the most widely present forms of cancer. The correct classification of skin lesions as malignant or benign is a complex process that has to be undertaken by experienced specialists. Another major issue of the class imbalance of data causes a bias in the results of classification. This article presents a novel approach to the usage of metadata of skin lesions images to classify them. The usage of techniques addresses the problem of class imbalance to nullify the imbalances. Further, the use of a convolutional neural network (CNN) is proposed to finetune the skin lesion data classification. Ultimately, it is proven that an ensemble of statistical metadata analysis and CNN usage would result in the highest accuracy of skin color classification instead of using the two techniques separately.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 2; 251--257
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analyses of skin lesion areas after thresholding
Analiza obszarów zmian skórnych po segmentacji przez progowanie
Autorzy:
Michalska, Magdalena
Powiązania:
https://bibliotekanauki.pl/articles/1841324.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
dermatoscopy
melanoma
thresholding
image region analysis
dermatoskopia
czerniak
segmentacja przez progowanie
analiza regionów obrazu
Opis:
Melanoma is one of the fastest spreading cancers.The aim of the article is to segment the skin lesionsfrom human skin dermatoscopic images covered by melanoma. Threshold segmentation was used, which allows a single skin lesionto be analyzed. Itshows the four areas of each based on their color. The created software monitors the border of skin lesion areas.Segmentation and analysis of the resulting images with different areas of skin change was carried out in the Matlab software.
Czerniak to jeden z najszybciej rozprzestrzeniających się nowotworów. Celem artykułu jest segmentacja zmiany skórnej z obrazów dermatoskopowych ludzkiej skóry objętych czerniakiem. Użyto segmentacj przez progowanie, która pozwala na analizę pojedyńczejzmiany skórnej. Ukazuje cztery obszary każdej z nich w oparciu o ich barwę. Stworzone oprogramowanie monitoruje granicę obszarów zmiany skórnej. Segmentacjai analiza powstałych obrazów z różnymi obszarami zmiany skórnej została przeprowadzona w środowisku Matlab.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2020, 10, 3; 9-12
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnosis of malignant melanoma by neural network ensemble-based system utilising hand-crafted skin lesion features
Autorzy:
Grochowski, Michał
Mikołajczyk, Agnieszka
Kwasigroch, Arkadiusz
Powiązania:
https://bibliotekanauki.pl/articles/221391.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
decision support
diagnostics
image processing
artificial neural networks
ensemble of neural networks
melanoma malignant
Opis:
Malignant melanomas are the most deadly type of skin cancer, yet detected early have high chances of successful treatment. In the last twenty years, the interest in automatic recognition and classification of melanoma dynamically increased, partly because of appearing public datasets with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task due to uneven sizes of datasets, huge intra-class variation with small interclass variation, and the existence of many artifacts in the images. One of the most recognized methods of melanoma diagnosis is the ABCD method. In the paper, we propose an extended version of this method and an intelligent decision support system based on neural networks that uses its results in the form of hand-crafted features. Automatic determination of the skin features with the ABCD method is difficult due to the large diversity of images of various quality, the existence of hair, different markers and other obstacles. Therefore, it was necessary to apply advanced methods of pre-processing the images. The proposed system is an ensemble of ten neural networks working in parallel, and one network using their results to generate a final decision. This system structure enables to increase the efficiency of its operation by several percentage points compared with asingle neural network. The proposed system is trained on over 5000 and tested afterwards on 200 skin moles. The presented system can be used as a decision support system for primary care physicians, as a system capable of self-examination of the skin with a dermatoscope and also as an important tool to improve biopsy decision making.
Źródło:
Metrology and Measurement Systems; 2019, 26, 1; 65-80
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dermatoscopy as a helpful tool in plastic surgeon’s practice – a preliminary study
Autorzy:
Antoszewski, Bogusław
Fijałkowska, Marta
Stabryła, Piotr
Kasielska-Trojan, Anna
Powiązania:
https://bibliotekanauki.pl/articles/1394229.pdf
Data publikacji:
2015
Wydawca:
Index Copernicus International
Tematy:
dermatoscopy
skin lesion
plastic surgery
Opis:
The aim of the study was to examine the utility of dermatoscopy in plastic surgeons’ practice in pigmented and non-pigmented skin lesions management. Material and methods. The examined group consisted of 68 patients with 132 lesions (50 women and 18 men) aged from 12 to 75 years (the mean: 47.2 years ± 16.9 years), who underwent dermatoscopy. Dermatoscopic photographs were analysed according to the ABCD and 7-point scales and then, a further treatment (surgical excision, electro resection or regular follow-up and observations) was planned. Results. The mean score of all lesions according to ABCD scale was 2.34 while in 7-point scale it was 0.62. In male and female groups the number of lesions and their ABCD and 7-point scale scores were similar (p>0.05). Histopathological examination revealed that all excised lesions were benign (compound melanocytic nevi) which corresponded with dermatoscopic evaluation. Conclusions. Dermatoscopy seems to be helpful in surgeons’ dealing with skin lesions practise and in many cases it enables to choose less invasive technique of lesions’ removal (electro resection), which gives better aesthetic results.
Źródło:
Polish Journal of Surgery; 2015, 87, 12; 609-613
0032-373X
2299-2847
Pojawia się w:
Polish Journal of Surgery
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selected applications of deepneural networks in skin lesion diagnostic
Wybrane zastosowania głębokich sieci neuronowych w diagnozie zmian skórnych
Autorzy:
Michalska-Ciekańska, Magdalena
Powiązania:
https://bibliotekanauki.pl/articles/2070250.pdf
Data publikacji:
2021
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
dermatoscopic images
neural networks
melanoma
skin lesions
obraz dermatoskopowy
sztuczne sieci neuronowe
zmiany skórne
Opis:
The article provides an overview of selected applications of deep neural networks in the diagnosis of skin lesions from human dermatoscopic images, including many dermatological diseases, including very dangerous malignant melanoma. The lesion segmentation process, features selectionand classification was described.Application examples of binary and multiclass classification are given.The described algorithms have been widely used in the diagnosis of skin lesions. The effectiveness, specificity, and accuracy of classifiers were compared and analyzed based on available datasets.
Artykuł zawiera przeglądwybranychzastosowań głębokich sieci neuronowych w diagnostyce zmian skórnych zobrazów dermatoskopowych człowieka z uwzględnieniem wielu choróbdermatologicznych, w tym bardzo niebezpiecznejz nich malignant melanoma. Został opisany processegmentacjizmiany, selekcji cech i klasyfikacji. Uwzględniono przykłady binarnej i wieloklasowej klasyfikacji. Opisane algorytmy znalazły szerokie zastosowanie w diagnostyce zmian skórnych.Porównano i przeanalizowanoskuteczność, specyficznośći dokładność klasyfikatorów w oparciu o dostępne zestawy danych.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2021, 11, 4; 18--21
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza istotności cech znamion skórnych dla celów diagnostyki czerniaka złośliwego
Skin lesion features analysis for malignant melanoma classification
Autorzy:
Mikołajczyk, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/268540.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
algorytm ewolucyjny
uczenie maszynowe
sieci neuronowe
systemy wspomagania decyzji
evolutionary algorithm
neural networks
decision support system
machine learning
Opis:
Pomimo dynamicznego rozwoju metod uczenia maszynowego i ich wdrażania do praktyki lekarskiej, automatyczna analiza znamion skórnych wciąż jest nierozwiązanym problemem. Poniższy artykuł proponuje zastosowanie algorytmu ewolucyjnego do zaprojektowania, wytrenowania i przetestowania całych populacji klasyfikatorów (sztucznych sieci neuronowych) oraz ich iteracyjnego udoskonalania w każdej kolejnej populacji, w celu osiągnięcia jak najlepszej dokładności klasyfikacji znamion skórnych. Algorytm zwraca optymalny zestaw cech opisujących obraz dermatoskopowy wraz z proponowaną architekturą sieci neuronowej. Uzyskano dokładność równą 85,83%, swoistość równą 79,07% oraz czułość równą 92,60%.
Despite the dynamic development of machine learning methods, automatic analysis of skin lesions is still open issue. The following article proposes the use of an evolutionary algorithm to design, train, and to test a whole population of classifiers (artificial neural networks) and to iteratively improve them in each subsequent population, in order to achieve the best possible accuracy in the classification of skin lesions task. The algorithm returns an optimal set of features describing the dermatoscopic image together with the proposed architecture of the neural network. High classification results were obtained, in particular: accuracy equal to 85.83%, specificity 79.07% and sensitivity 92.60%.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2018, 60; 67-70
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Skin lesions in the form of eruptive xanthomasas - a first manifestation of severe hyperlipidaemia
Autorzy:
Bujny, J.
Kot, M.
Slowik-Kwiatkowska, I.
Prystupa, A.
Dzida, G.
Nowicki, G.J.
Naylor, K.
Powiązania:
https://bibliotekanauki.pl/articles/3177.pdf
Data publikacji:
2014
Wydawca:
Instytut Medycyny Wsi
Tematy:
skin lesion
eruptive xanthoma
hyperlipidemia
diabetes type 2
hypertriglyceridemia
Opis:
The presence of eruptive xanthomas is associated with lipid disorders, particularly hypertriglyceridaemia. Intensified hypertriglyceridaemia >10 mmol/l (880 mg%) is a major risk factor for acute pancreatitis. The presented case concerns a 40-year-old man with skin lesions in the form of eruptive xanthomas, accompanied by hypertriglyceridaemiae, complicated by acute pancreatitis, and diagnosed with type 2 diabetes with glycated haemoglobin 9.7 g/dl. Seeding of skin lesions appeared 2–3 months before hospitalization and was observed in the direction of molluscum contagiosum.
Źródło:
Journal of Pre-Clinical and Clinical Research; 2014, 08, 2
1898-2395
Pojawia się w:
Journal of Pre-Clinical and Clinical Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An overview of classification methods from dermoscopy images in skin lesion diagnostic
Przegląd metod klasyfikacji obrazów dermatoskopowych wykorzystywanych w diagnostyce zmian skórnych
Autorzy:
Michalska, Magdalena
Boyko, Oksana
Powiązania:
https://bibliotekanauki.pl/articles/407654.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
dermatoscopic images
classification method
neural network
SVM
skin cancer
skin lesion
obraz dermatoskopowy
metoda klasyfikacji
sztuczna sieć neuronowa
nowotwór skóry
zmiany skórne
Opis:
The article contains a review of selected classification methods of dermatoscopic images with human skin lesions, taking into account various stages of dermatological disease. The described algorithms are widely used in the diagnosis of skin lesions, such as artificial neural networks (CNN, DCNN), random forests, SVM, kNN classifier, AdaBoost MC and their modifications. The effectiveness, specificity and accuracy of classifications based on the same data sets were also compared and analyzed.
Artykuł zawiera przegląd wybranych metod klasyfikacji obrazów dermatoskopowych zmian skórnych człowieka z uwzględnieniem różnych etapów choroby dermatologicznej. Opisane algorytmy są szeroko wykorzystywane w diagnostyce zmian skórnych, takie jak sztuczne sieci neuronowe (CNN, DCNN), random forests, SVM, klasyfikator kNN, AdaBoost MC i ich modyfikacje. Porównana i przeanalizowana została również skuteczność, specyficznośc i dokładność klasyfikatów w oparciu o te same zestawy danych.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2020, 10, 2; 36-39
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
AI empowered diagnosis of pemphigus: a machine learning approach for automated skin lesion detection
Diagnostyka pęcherzycy z wykorzystaniem sztucznej inteligencji: podejście oparte na uczeniu maszynowym do automatycznego wykrywania zmian skórnych
Autorzy:
Ahmed, Mamun
Islam, Salma Binta
Alif, Aftab Uddin
Islam, Mirajul
Saima, Sabrina Motin
Powiązania:
https://bibliotekanauki.pl/articles/27315458.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
pemphigus
blister
augmentation
CNN
pęcherzyca
pęcherze
augmentacja
Opis:
Pemphigus is a skin disease that can cause a serious damage to human skin. Pemphigus can result in other issues including painful patches and infected blisters, which can result in sepsis, weight loss, and starvation, all of which can be life-threatening, tooth decay and gum disease. Early prediction of Pemphigus may save us from fatal disease. Machine learning has the potential to offer a highly efficient approach for decision-making and precise forecasting. The healthcare sector is experiencing remarkable advancements through the utilization of machine learning techniques. Therefore, to identify Pemphigus using images, we suggested machine learning-based techniques. This proposed system uses a large dataset collected from various web sources to detect Pemphigus. Augmentation has been applied on our dataset using techniques such as zoom, flip, brightness, distortion, magnitude, height, width to enhance the breadth and variety of the dataset and improve model’s performance. Five popular machine learning algorithms has been employed to train and evaluate model, these are K-Nearest Neighbor (referred to as KNN), Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), and Convolutional Neural Network (CNN). Our outcome indicate that the CNN based model outperformed the other algorithms by achieving accuracy of 93% whereas LR, KNN, RF and DT achieved accuracies of 78%, 70%, 85% and 75% respectively.
Pęcherzyca to choroba skóry, która może powodować poważne uszkodzenia ludzkiej skóry. Pęcherzyca może powodować inne problemy, w tym bolesne plamy i zakażone pęcherze, które mogą skutkować sepsą, utratą masy ciała i łaknienia, co może zagrażać życiu, próchnicą zębów i chorób dziąseł. Wczesne wykrycie pęcherzycy może uchronić przed śmiertelną chorobą. Uczenie maszynowe może zaoferować wysoce efektywne podejście do podejmowania decyzji i precyzyjnego prognozowania. Sektor opieki zdrowotnej doświadcza niezwykłych postępów dzięki wykorzystaniu technik uczenia maszynowego. Dlatego do identyfikacji pęcherzycy za pomocą obrazów zaproponowano techniki oparte na uczeniu maszynowym. Proponowany system wykorzystuje duży zbiór danych zebranych z różnych źródeł internetowych do wykrywania pęcherzycy. W zbiorze danych zastosowano augmentację przy użyciu technik takich jak powiększanie, odwracanie, zmiana jasności, zniekształcenie, zmiana wielkości, wysokość i szerokości, aby zwiększyć zakres i różnorodność zbioru danych oraz poprawić wydajność modelu. Do uczenia i oceny modelu wykorzystano pięć popularnych algorytmów uczenia maszynowego, są to: K-Nearest Neighbor (określany jako KNN), drzewo decyzyjne (DT), regresja logistyczna (LR), las losowy (RF) i konwolucyjną sieć neuronowa (CNN). Uzyskane wyniki wskazują, że model oparty na CNN był lepszy od innych algorytmów, osiągając dokładność na poziomie 93%, podczas gdy LR, KNN, RF i DT osiągnęły dokładność odpowiednio 78%, 70%, 85% i 75%.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 4; 21--26
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-12 z 12

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies