Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sequential pattern mining" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Probabilistic Sequence Mining : Evaluation and Extension of ProMFS Algorithm for Real-Time Problems
Autorzy:
Hryniów, K.
Dzieliński, A.
Powiązania:
https://bibliotekanauki.pl/articles/226422.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ProMFS
sequential pattern mining
probabilistic mining
real-time
Opis:
Sequential pattern mining is an extensively studied method for data mining. One of new and less documented approaches is estimation of statistical characteristics of sequence for creating model sequences, that can be used to speed up the process of sequence mining. This paper proposes extensive modifications to one of such algorithms, ProMFS (probabilistic algorithm for mining frequent sequences), which notably increases algorithm's processing speed by a significant reduction of its computational complexity. A new version of algorithm is evaluated for real-life and artificial data sets and proven to be useful in real-time applications and problems.
Źródło:
International Journal of Electronics and Telecommunications; 2012, 58, 4; 323-326
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Accuracy of generalized context patterns in the context based sequential patterns mining
Autorzy:
Ziembiński, R. Z.
Powiązania:
https://bibliotekanauki.pl/articles/206061.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
knowledge discovery
context based sequential pattern mining
sequential context pattern clustering
pattern accuracy
Opis:
A context pattern is a frequent subsequence mined from the context database containing set of sequences. This kind of sequential patterns and all elements inside them are described by additional sets of context attributes e.g. continuous ones. The contexts describe circumstances of transactions and sources of sequential data. These patterns can be mined by an algorithm for the context based sequential pattern mining. However, this can create large sets of patterns because all contexts related to patterns are taken from the database. The goal of the generalization method is to reduce the context pattern set by introducing a more compact and descriptive kind of patterns. This is achieved by finding clusters of similar context patterns in the mined set and transforming them to a smaller set of generalized context patterns. This process has to retain as much as possible information from the mined context patterns. This paper introduces a definition of the generalized context pattern and the related algorithm. Results from the generalization may differ as depending on the algorithm design and settings. Hence, generalized patterns may reflect frequent information from the context database differently. Thus, an accuracy measure is also proposed to evaluate the generalized patterns. This measure is used in the experiments presented. The generalized context patterns are compared to patterns mined by the basic sequential patterns mining with prediscretization of context values.
Źródło:
Control and Cybernetics; 2011, 40, 3; 585-603
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies