Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pattern extraction" wg kryterium: Wszystkie pola


Wyświetlanie 1-14 z 14
Tytuł:
Finger vein pattern extraction methods
Metody ekstrakcji układu naczyniowego
Autorzy:
Waluś, M.
Powiązania:
https://bibliotekanauki.pl/articles/151327.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
finger vein
pattern extraction
biometrics
układ naczyniowy
ekstrakcja cech
biometria
Opis:
In this paper the author presents techniques used for finger vein pattern extraction from raw biometric images. The proposition of a new image acquisition system is given. The main conclusion is the usability of image enhancement during acquisition process before taking the snapshot of a biometric probe. The proposed solution, compared to other techniques, improves the image quality and the overall effectiveness of the biometric system in the context of proper identification or verification.
W pracy przedstawiono metody wyodrębnienia wzorca układu naczyniowego palców dłoni z obrazów biometrycznych. Oprócz prezentacji najczęściej stosowanych metod przedstawiono prace autora w zakresie rozwoju nowego systemu akwizycji wzorców. W porównaniu do innych badań w tym zakresie skupiono się na zwiększeniu jakości obrazów poprzez lokalne dostrojenie jasności świecenia diod LED emitujących światło w zakresie widma bliskiej podczerwieni wykorzystywanych do oświetlenia palca w urządzeniu rejestrującym wzorce. Uzyskano obiecujące rezultaty polepszenia jakości obrazów głównie poprzez bardziej zróżnicowane uwidocznienie obszarów zajmowanych przez układ naczyniowy oraz pozostałe tkanki palca w porównaniu do innych metod. Obecnie trwają prace związane z ulepszeniem stworzonego prototypu urządzenia oraz prowadzone są konsultacje mające na celu określenie jego przydatność w diagnostyce medycznej.
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 6, 6; 366-368
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Iris identification method using only a section of the pattern
Autorzy:
Bobulski, J.
Powiązania:
https://bibliotekanauki.pl/articles/174981.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
biometrics
iris recognition
iris pattern extraction
Opis:
Iris based authentication methods are popular due to their reliability and dependability. This paper proposes the method of the iris recognition that instead uses only two fragments of the pattern. The presented method allows for a simpler iris extraction, as it does not use a complex conversion of an iris pattern from a circular to rectangular shape. The results obtained from this experiment show similarities to other previous ones. Importantly, the proposed method may be treated as an alternative solution. The experiment confirmed the validity of the concept for the proposed iris recognition method. Moreover, this method is quicker in comparison to the others. The additional merit of the proposed solution is the elimination of the distortion which comes from the eyelids and eyelashes at the beginning of the iris image processing. Moreover, this method does not require using additional techniques to eliminate disturbances.
Źródło:
Optica Applicata; 2018, 48, 1; 149-160
0078-5466
1899-7015
Pojawia się w:
Optica Applicata
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Opis i implementacja algorytmu wyznaczania rozkładu fazy obrazów prążkowych w układzie FPGA
Hardware implementation of phase extraction algorithm in fringe pattern analysis
Autorzy:
Staszek, K.
Powiązania:
https://bibliotekanauki.pl/articles/155308.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
obraz prążkowy
ekstrakcja fazy
transformacja falkowa
FPGA
fringe pattern
phase extraction
wavelet transform
Opis:
Niniejszy artykuł przedstawia opis algorytmu wyznaczania rozkładu fazy z obrazów prążkowych. Jest to jeden z kroków przetwarzania obrazów stosowanych powszechnie w profilometrii optycznej, dzięki której na podstawie zdjęcia można odtworzyć trójwymiarowy kształt obiektu. Algorytm oparty został na zespolonej transformacji falkowej i pozwala na pełną automatyzację procesu skanowania. Duży nacisk został położony na optymalizację pod kątem sprzętowej implementacji w układzie FPGA. Wykazana została dobra odporność zarówno na szumy jak i niską jakość obrazu prążkowego.
This paper presents a phase extraction algorithm used in fringe pattern analysis. It is one of steps in optical profilometry process used to obtain full three-dimensional information about the measured object shape. The algorithm is based on the complex wavelet transform and allows full automation of the process. Since the fringe patterns represent non-stationary signals, application of time-frequency analysis provides better results than the commonly used Fourier transform. Six variants of the wavelet transform (one- and two-dimensional) were simulated in order to minimise the required hardware resources in FPGA and test their robustness. As a result the one-dimensional minimised transform of variable size was chosen. A further part of the paper is focused on particular blocks of implementation. The presented wavelet coefficient computational method decreases the number of necessary operations during transform computing and enables significant reducing of memory requirements. The applied arcus tangens block with logarithmic division of approximation intervals gives correct extracted phase values in the entire four-quarter interval. The solution mentioned above leads to great minimisation of the described block without any impact on the accuracy. The last part of the paper presents processing results. The emphasis was put on the noise robustness and influence of the fringe pattern poor quality on the processing error. As it is shown, the algorithm works correctly even with only three gray levels and high noise level present in the input picture.
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 3, 3; 298-301
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Novel framework for aspect knowledge base generated automatically from social media using pattern rules
Autorzy:
Tran, Tuan Anh
Duangsuwan, Jarunee
Wettayaprasit, Wiphada
Powiązania:
https://bibliotekanauki.pl/articles/2097963.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
opinion mining
aspect knowledge base
aspect extraction
pattern rules
social media
Opis:
One of the factors that improve businesses in business intelligence is summarization systems that can generate summaries based on sentiment from social media. However, these systems cannot produce such summaries automatically; they use annotated datasets. To support these systems with annotated datasets, we propose a novel framework that uses pattern rules. The framework has two procedures: 1) pre-processing, and 2) aspect knowledge-base generation. The first procedure is to check and correct any misspelled words (bigram and unigram) by a proposed method and tag the parts-of-speech of all of the words. The second procedure is to automatically generate an aspect knowledge base that is to be used to produce sentiment summaries by sentiment-summarization systems. Pattern rules and semantic similarity-based pruning are used to automatically generate an aspect knowledge base from social media. In the experiments, eight domains from benchmark datasets of reviews are used. The performance evaluation of our proposed approach shows the highest performance when compared to other unsupervised approaches.
Źródło:
Computer Science; 2021, 22 (4); 489--516
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rgb-D face recognition using LBP-DCT algorithm
Autorzy:
Kumar, Sunil B L
Kumari, Sharmila M
Powiązania:
https://bibliotekanauki.pl/articles/1956066.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
RGB-D
kinect
local binary pattern
pattern recognition
feature extraction
histogram
face recognition
lokalny wzorzec binarny
rozpoznawanie wzorców
wyodrębnianie cech
rozpoznawanie twarzy
Opis:
Face recognition is one of the applications in image processing that recognizes or checks an individual's identity. 2D images are used to identify the face, but the problem is that this kind of image is very sensitive to changes in lighting and various angles of view. The images captured by 3D camera and stereo camera can also be used for recognition, but fairly long processing times is needed. RGB-D images that Kinect produces are used as a new alternative approach to 3D images. Such cameras cost less and can be used in any situation and any environment. This paper shows the face recognition algorithms’ performance using RGB-D images. These algorithms calculate the descriptor which uses RGB and Depth map faces based on local binary pattern. Those images are also tested for the fusion of LBP and DCT methods. The fusion of LBP and DCT approach produces a recognition rate of 97.5% during the experiment
Źródło:
Applied Computer Science; 2021, 17, 3; 73-81
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The epidemiological pattern of oroantral communication – a retrospective study
Autorzy:
Pawlik, Patrycja
Stanek, Anna
Wyganowska-Świątkowska, Marzena
Błochowiak, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/454686.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Rzeszowski. Wydawnictwo Uniwersytetu Rzeszowskiego
Tematy:
maxillary sinus
oroantral communication
tooth extraction
Opis:
Introduction. Oroantral communication (OAC) between the maxillary sinus and the oral cavity is an infrequent post-surgical complication occurring most commonly after extraction of posterior maxillary teeth. Aim. To present the characteristics of OAC and predisposing factors as well as evaluate postoperative pharmacological therapy and complications in patients with an OAC. Material and methods. In this retrospective study, medical records of 63 patients with diagnosed OAC between 2011 and 2018 were analyzed. Results. The most frequent causes for tooth extraction leading to an OAC were periodontitis (n=34; 54%), carious destruction of the tooth (n=14; 22.2%), and tooth impaction (n=10; 16%). First molars (n=28; 44.4%), second molars (n=14; 22.2%) and third molars (n= 13; 20.6%) were the most frequently related teeth to OACs. The majority of OACs appeared in the fourth (n=22; 35%) and third (n=20; 31.7%) decades of life. Conclusion. OACs are rarely seen on an everyday basis by general practitioners; however, if left untreated, they may lead to further serious complications. Proper postoperative precautions must be taken in order to prevent further complications, and thus the evaluation of predisposing factors is of great importance.
Źródło:
European Journal of Clinical and Experimental Medicine; 2019, 1; 38-44
2544-2406
2544-1361
Pojawia się w:
European Journal of Clinical and Experimental Medicine
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Personal identification using retina
Autorzy:
Choraś, R.S.
Powiązania:
https://bibliotekanauki.pl/articles/333033.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
siatkówka
biometria siatkówki
wybór cech obrazu
retina
retina biometrics
vessel pattern
feature extraction
Gabor transform
feature vector
matching
Opis:
This paper proposes a biometric system for authentication that uses the retina blood vessel pattern. The retina biometric analyzes the layer of blood vessels located at the back of the eye. The blood vessels at the back of the eye have a unique pattern, from eye to eye and person to person. The retina, a layer of blood vessels located at the back of the eye, forms an identity card for the individual under investigation. In particular retinal recognition creates an ”eye signature” from its vascular configuration and its artificial duplication is thought to be virtually impossible.
Źródło:
Journal of Medical Informatics & Technologies; 2009, 13; 53-58
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wyznaczanie atrybutów sygnału EEG w oparciu o transformatę Stockwella
EEG signal attribute extraction based on the Stockwell transform
Autorzy:
Rutkowski, G.
Patan, K.
Powiązania:
https://bibliotekanauki.pl/articles/156767.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
EEG
reprezentacja czasowo-częstotliwościowa
klasyfikacja
S-transform
pattern recognition
classification
Opis:
W nowoczesnych systemach medycznych w dziedzinie elektroencefalografii coraz bardziej zwiększa się nacisk na udoskonalanie aparatury pomiarowej. Nieustannie poszukuje się rozwiązań poprawiających niedoskonałości sprzętowe, a trudności dotyczą zarówno sfery konstrukcyjnej, jak i zaimplementowanych algorytmów. Problemy dotyczą eliminacji artefaktów i samej charakterystyki sygnałów EEG. Proponowane rozwiązania począwszy od metod klasycznych, a skończywszy na metodach opartych na sztucznej inteligencji ciągle ewoluują i pozwalają na wdrażanie coraz to nowszych rozwiązań na potrzeby kliniczne. Techniki oparte na analizie widmowej pozwalają wspomóc pracę lekarzy specjalistów w procesie diagnostycznym dla poszczególnych dysfunkcji o podłożu neurologicznym. Jednym ze stosowanych rozwiązań jest dynamicznie rozwijająca się metodologia oparta na zaawansowanych narzędziach analizy widmowej. Transformata S pozwala na wprowadzenie i zastosowanie funkcji okna o zmiennej szerokości zależnej od częstotliwości. Uzyskane informacje pozwalają zarówno określić rozdzielczość zależną od częstotliwości, jak i wyznaczyć widmo. W artykule opisano eksperyment na próbkach rzeczywistych pomiarów EEG zgromadzonych przy ścisłej współpracy z Oddziałem Neurologii i Udarów Szpitala Wojewódzkiego w Zielonej Górze. Zaprezentowano wyniki przy użyciu transformaty S w ekstrakcji cech i klasyfikacji zaburzeń neurologicznych dla przypadków napadów epileptycznych.
In modern medical systems more and more emphasis is put on improvement of the measuring equipment. We are constantly looking for solutions to improve both hardware and software. The main problems relate to the elimination of artifacts and the analysis of EEG signal characteristics. To date elaborated solutions still evolve and allow for the implementation of still newer and newer solutions for clinical needs. One of possible solutions is to use a dynamically developing methodology based on advanced spectral analysis tools. First, the Fourier Transform was used, but it turned out to be effective only for stationary signals. The Fourier Transform allows extracting information about the signal spectrum components, without providing the information about the component occurrence time of the component. Unfortunately, EEG signals are non-stationary in nature. The solution may be S Transform, which can be viewed as an extension of the popular Short-Time Fourier Transform and wavelet transform. S Transform allows for the introduction and application of window functions with a variable width frequency dependent. The resulting information helps us to determine attributes of EEG signals needed for classification. The paper deals with experiments carried out using EEG samples collected in close collaboration with the Ward of Neurology and Strokes of Provincial Hospital of Zielona Góra. EEG signals were recorded using 16-channel equipment under the supervision of experts in neurology practices. In result, 1154 sequences were acquired including both dysfunctions (586 epileptic seizures) and normal records (568). EEG sequences were analyzed using S-transform to extract signal features. The last step was classification of EEG signals performed using a nearest neighbor classifier. The presented results are very promising and may have an impact on the improvement and refinement of medical diagnostic tools.
Źródło:
Pomiary Automatyka Kontrola; 2013, R. 59, nr 3, 3; 208-211
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Texture and gene expression analysis of the MRI brain in detection of Alzheimer’s disease
Autorzy:
Bustamam, A.
Sarwinda, D.
Ardenaswari, G.
Powiązania:
https://bibliotekanauki.pl/articles/91834.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
Alzheimer’s disease
MRI
Feature Extraction
Bi-Clustering
Local Binary Pattern
LBP
Opis:
Alzheimer’s disease is a type of dementia that can cause problems with human memory, thinking and behavior. This disease causes cell death and nerve tissue damage in the brain. The brain damage can be detected using brain volume, whole brain form, and genetic testing. In this research, we propose texture analysis of the brain and genomic analysis to detect Alzheimer’s disease. 3D MRI images were chosen to analyze the texture of the brain, and microarray data were chosen to analyze gene expression. We classified Alzheimer’s disease into three types: Alzheimer’s, Mild Cognitive Impairment (MCI), and Normal. In this study, texture analysis was carried out by using the Advanced Local Binary Pattern (ALBP) and the Gray Level Co-occurrence Matrix (GLCM). We also propose the bi-clustering method to analyze microarray data. The experimental results from texture analysis show that ALBP had better performance than GLCM in classification of Alzheimer’s disease. The ALBP method achieved an average value of accuracy of between 75% - 100% for binary classification of the whole brain data. Furthermore, Biclustering method with microarray data shows good performance gene expression, where this information show influence Alzheimer’s disease with total of bi-cluster is 6.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 2; 111-120
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Critical exponent analysis applied to surface EMG signals for multifunction myoelectric control
Autorzy:
Phinyomark, A.
Phothisonothai, M.
Phukpattaranont, P.
Limsakul, C.
Powiązania:
https://bibliotekanauki.pl/articles/220544.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
biomedical signal processing
electromyography signal
feature extraction
fractal analysis
human machine interface
pattern classification
Opis:
Based on recent advances in non-linear analysis, the surface electromyography (sEMG) signal has been studied from the viewpoints of self-affinity and complexity. In this study, we examine usage of critical exponent analysis (CE) method, a fractal dimension (FD) estimator, to study properties of the sEMG signal and to deploy these properties to characterize different movements for gesture recognition. SEMG signals were recorded from thirty subjects with seven hand movements and eight muscle channels. Mean values and coefficient of variations of the CE from all experiments show that there are larger variations between hand movement types but there is small variation within the same type. It also shows that the CE feature related to the self-affine property for the sEMG signal extracted from different activities is in the range of 1.855∼2.754. These results have also been evaluated by analysis-of-variance (p-value). Results show that the CE feature is more suitable to use as a learning parameter for a classifier compared with other representative features including root mean square, median frequency and Higuchi's method. Most p-values of the CE feature were less than 0.0001. Thus the FD that is computed by the CE method can be applied to be used as a feature for a wide variety of sEMG applications.
Źródło:
Metrology and Measurement Systems; 2011, 18, 4; 645-658
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recognition of Sign Language from High Resolution Images Using Adaptive Feature Extraction and Classification
Autorzy:
Csóka, Filip
Polec, Jaroslav
Csóka, Tibor
Kačur, Juraj
Powiązania:
https://bibliotekanauki.pl/articles/226004.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sign language
gesture
sign
recognition
CNN
LoG
real-time
pattern recognition
machine learning
Opis:
A variety of algorithms allows gesture recognition in video sequences. Alleviating the need for interpreters is of interest to hearing impaired people, since it allows a great degree of self-sufficiency in communicating their intent to the non-sign language speakers without the need for interpreters. State-of-the-art in currently used algorithms in this domain is capable of either real-time recognition of sign language in low resolution videos or non-real-time recognition in high-resolution videos. This paper proposes a novel approach to real-time recognition of fingerspelling alphabet letters of American Sign Language (ASL) in ultra-high-resolution (UHD) video sequences. The proposed approach is based on adaptive Laplacian of Gaussian (LoG) filtering with local extrema detection using Features from Accelerated Segment Test (FAST) algorithm classified by a Convolutional Neural Network (CNN). The recognition rate of our algorithm was verified on real-life data.
Źródło:
International Journal of Electronics and Telecommunications; 2019, 65, 2; 303-308
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cortical pattern detection for the developing brain: a 3D vertex labeling and skeletonization approach
Autorzy:
Clouchoux, C.
Kudelski, D.
Bouyssi-Kobar, M.
Viseur, S.
du Plessis, A.
Evans, A.
Mari, J.-L.
Limperopoulos, C.
Powiązania:
https://bibliotekanauki.pl/articles/333059.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozwój mózgu
ocena krzywizny
wychwytywanie cech
sulcal pattern
brain development
in-vivo MRI
cortical surface
curvature estimation
morphological operators
feature extraction
Opis:
Normal brain development is associated with expansion and folding of the cerebral cortex in a normal sequence of gyral–sulcal formation. We propose a global approach for measuring the cortical folding pattern of the developing brain. Our method measures geometric features directly on the cortical surface mesh, based on vertex labeling and skeletonization. The resulting extraction provides an accurate representation of global cortical organization. We applied this method to 17 young infants in order to characterize the evolution of cortical organization in the developing brain.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 16; 161-166
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pattern Recognition Methods for Detecting Voltage Sag Disturbances and Electromagnetic Interference in Smart Grids
Autorzy:
Yalcin, T.
Ozdemir, M.
Powiązania:
https://bibliotekanauki.pl/articles/136160.pdf
Data publikacji:
2016
Wydawca:
EEEIC International Barbara Leonowicz Szabłowska
Tematy:
C4.5 decision trees
electromagnetic interference
feature extraction
hilbert huang transform
power quality disturbance
smart grids
support vector machines
Opis:
Identification of system disturbances, detection of them guarantees smart grids power quality (PQ) system reliability and provides long lasting life of the power system. The key goal of this study is to find the best accuracy of identification algorithm for non-stationary, non-linear power quality disturbances such as voltage sag, electromagnetic interference in smart grids. PQube, power quality and energy monitor, was used to acquire these distortions. Ensemble Empirical Mode Decomposition is used for electromagnetic interference reduction with first intrinsic mode function. Hilbert Huang Transform is used for generating instantaneous amplitude and instantaneous frequency feature of real time voltage sag power signal. Outputs of Hilbert Huang Transform is intrinsic mode functions (IMFs), instantaneous frequency (IF), and instantaneous amplitude (IA). Characteristic features are obtained from first IMFs, IF, and IA. The six features—, the mean, standard deviation,skewness, kurtosis of both IF and IA are then calculated. These features are normalized along with the inputs classifiers. The proposed power system monitoring system is able to detect power system voltage sag disturbances and capable of recognize electromagnetic interference component. In this study based on experimental studies, Hilbert Huang Transform based pattern recognition technique was used to investigate power signal to diagnose voltage sag and in power grid. Support Vector Machines and C4.5 Decision Tree were operated and their achievements were matched for precision and CPU timing. According to the analysis, decision tree algorithm without dimensionality reduction produces the best solution.
Źródło:
Transactions on Environment and Electrical Engineering; 2016, 1, 3; 86-93
2450-5730
Pojawia się w:
Transactions on Environment and Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determination of the Optimal Threshold Value and Number of Keypoints in Scale Invariant Feature Transform-based Copy-Move Forgery Detection
Autorzy:
Isnanto, R. Rizal
Zahra, Ajub Ajulian
Santoso, Imam
Lubis, Muhammad Salman
Powiązania:
https://bibliotekanauki.pl/articles/227299.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
forgery
Gaussian noise
feature extraction
pattern matching
Euclidean distance
Opis:
The copy-move forgery detection (CMFD) begins with the preprocessing until the image is ready to process. Then, the image features are extracted using a feature-transform-based extraction called the scale-invariant feature transform (SIFT). The last step is features matching using Generalized 2 Nearest-Neighbor (G2NN) method with threshold values variation. The problem is what is the optimal threshold value and number of keypoints so that copy-move detection has the highest accuracy. The optimal threshold value and number of keypoints had determined so that the detection n has the highest accuracy. The research was carried out on images without noise and with Gaussian noise.
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 3; 561-569
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-14 z 14

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies