- Tytuł:
- Can concurrent teaching promote equal biomechanical adaptations at front crawl and backstroke swimming?
- Autorzy:
-
Costa, M. J.
Barbosa, T. M.
Morais, J. E.
Miranda, S.
Marinho, D. A. - Powiązania:
- https://bibliotekanauki.pl/articles/307054.pdf
- Data publikacji:
- 2017
- Wydawca:
- Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
- Tematy:
-
ekspertyza
kinematyka ruchu
pływak
expertise
kinematics
swimmer - Opis:
- Purpose: The biomechanical adaptations in front crawl and backstroke swimming, as influenced by the implementation of a concurrent teaching programme were analysed. Methods: Sixteen participants (19.75 ± 1.13 years) underwent a 30 weeks intervention characterized by an increasing complexity to accomplish motor skills in the following order: (i) lower limbs propulsion; (ii) lower limbs propulsion synchronized with breathing cycle; (iii) lower limbs propulsion synchronized with one upper limb action; (iv) lower limbs propulsion synchronized with both breathing cycle and one upper limb action; (v) full swimming stroke; (vi) motor trajectory of the arms stroke. Performance and biomechanics were measured at front crawl and backstroke during three time points throughout the programme. Results: There were improvements in performance over time at front crawl (21.49 s to 19.99 s, p < 0.01) and backstroke (27.15 s to 24.60 s, p = 0.01). Significant improvements were found for velocity at front crawl (1.13 m/s to 1.22 m/s, p < 0.01) and backstroke (0.92 m/s to 1.00 m/s, p < 0.01). Stroke frequency increased at backstroke (0.64 to 0.73 Hz, p = 0.01), while the intra-cyclic variation of the velocity decreased at front crawl (0.13 to 0.12%, p = 0.02). There was also a moderate-high inter-subject variability in response to the programme. Conclusions: These findings prove that a programme of 30 weeks teaching concurrently front crawl and backstroke is effective to promote similar biomechanical adaptations in low-tier swimmers. However, each subject shows an individual response to better adapt the biomechanical actions and to reach a higher level of expertise.
- Źródło:
-
Acta of Bioengineering and Biomechanics; 2017, 19, 1; 81-88
1509-409X
2450-6303 - Pojawia się w:
- Acta of Bioengineering and Biomechanics
- Dostawca treści:
- Biblioteka Nauki