Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "płynny gaz ziemny" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Możliwości zastosowania przepływomierzy masowych typu Coriolis do pomiarów rozliczeniowych w obszarze LNG małej skali oraz innych cieczy kriogenicznych
The possibility of application of Coriolis Mass Flow Meters for custody transfer metering related to Small Scale LNG and other cryogenic media
Autorzy:
Rosłonek, Grzegorz
Bogucki, Adam
Urbanowicz, Adam
Kowalczyk, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/1834959.pdf
Data publikacji:
2019
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
LNG
płynny gaz ziemny
przepływomierz Coriolisa
przepływomierz masowy
pomiary rozliczeniowe LNG
LNG w obszarze małej skali
Liquefied Natural Gas
Coriolis Flow Meter
mass flow meter
LNG custody transfer
small scale LNG
Opis:
W artykule przedstawiono zarys projektów SMOK prowadzonych w PGNiG SA, dotyczących możliwości wykorzystania przepływomierzy Coriolisa do pomiarów rozliczeniowych LNG w obszarze LNG małej skali. Z uwagi na fakt, że projekty SMOK w PGNiG dotyczą mediów kriogenicznych, w szczególności obszaru LNG małej skali, w artykule przedstawiono wyniki badań metrologicznych instalacji SMOK – zarówno z wykorzystaniem wody, jak i LNG. Zaproponowano sposób postępowania odnośnie do możliwości zapewnienia nadzoru metrologicznego dla instalacji SMOK. Obecnie ogólnoświatowy problem stanowi weryfikacja wskazań przepływomierzy dla cieczy kriogenicznych, ponieważ brak jest na świecie uznanych i specjalistycznych stanowisk referencyjnych do tego typu porównań. W projektach SMOK wykorzystano istniejącą infrastrukturę kriogeniczną w Oddziale PGNiG w Odolanowie, gdzie również produkuje się LNG, do weryfikacji wskazań przepływomierzy Coriolisa w zastosowaniach do pomiarów przepływu LNG. W tym celu połączono statyczne metody wagowe z użyciem dużych i dokładnych wag pomostowych nadzorowanych od strony metrologicznej przez krajową administrację miar z bezpośrednimi metodami dynamicznymi do pomiarów cieczy kriogenicznych w przepływie. Takie stanowisko badawcze jest pierwszym oficjalnym stanowiskiem krajowym i prawdopodobnie drugim w świecie. Obecnie jedynie laboratorium CEESI w stanie Kolorado w USA potwierdziło posiadanie tego typu stanowiska kriogenicznego, opartego na ciekłym azocie i przeznaczonego do weryfikacji komercyjnych. Niepewność pomiarów stanowiska CEESI jest jednak wyższa niż w przypadku instalacji w PGNiG SA w Odolanowie, stworzonej w ramach badań w projektach SMOK. W prezentowanym artykule zaproponowano praktyczne podejście do wzorcowań przepływomierzy Coriolisa dla cieczy kriogenicznych z wykorzystaniem wody i mediów kriogenicznych. Zaproponowano sposób nadzoru metrologicznego przepływomierzy do cieczy kriogenicznych zarówno dla etapu aktualnego – określonego jako etap przejściowy – jak i w przyszłości, gdy powstaną specja- listyczne stanowiska referencyjne oparte na cieczach kriogenicznych. W artykule przedstawiono wyniki badań metrologicznych instalacji SMOK – zarówno z wykorzystaniem wody, jak i LNG.
The article presents an outline of the SMOK projects conducted in PGNiG SA, regarding the possibility of using Coriolis flowmeters for small scale LNG custody transfer. Due to the fact that the SMOK projects in PGNiG concern cryogenic media, in particular small scale LNG, the article presents the results of metrological tests of the SMOK installation, both with the use of water and LNG. The method of dealing with the possibility of providing metrological supervision for the SMOK installation has been proposed. Currently, the global problem is the verification of flowmeter indications for cryogenic liquids because there are no recognized and dedicated reference installations in the world for such comparisons. In the SMOK projects, existing cryogenic infrastructure at the PGNiG Branch in Odolanów was used, where LNG is also produced, for the verification of Coriolis flowmeters in applications for LNG flow measurements. Because of this, static weighing methods were combined using a large and accurate balance bridge, monitored from the metrological point of view by the national administration of measures with direct dynamic methods for measuring cryogenic liquids in the flow. Such kind of research installation is the first official national verification installation and probably the second in the world. At present, only the CEESi laboratory in Colorado in the US has confirmed the possession of a cryogenic installation of this type, based on liquid nitrogen and intended for commercial verifications. However, the uncertainty of the CEESi installation is higher than for the installation at PGNiG SA in Odolanów, created as part of research under the SMOK projects. The paper presents a practical approach to the calibration of Coriolis flowmeters for cryogenic liquids using water and cryogenic media. A method of metrological supervision of flow meters for cryogenic liquids was proposed for both the current stage – defined as a transitional stage – and for the future when dedicated reference installations based on cryogenic liquids will be created. The article presents the results of metrological tests of the SMOK installation, both with the use of water and LNG.
Źródło:
Nafta-Gaz; 2019, 75, 10; 633-639
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Properties of artificial gaseous mixtures for their safe use and support the natural gas supply networks
Własności sztucznych mieszanin gazowych do bezpiecznego ich użytkowania i wspomagania zasilania sieci gazu ziemnego
Autorzy:
Łaciak, M.
Powiązania:
https://bibliotekanauki.pl/articles/220192.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
gaz ziemny
zamienność gazów
szybkość spalania
szczytowe zapotrzebowanie
gaz płynny
propan
biogaz
liczba Wobbego
natural gas
interchangeability of gases
burning velocity
peak shaving
liquid petroleum gas
propane
landfill gas
Wobbe index
Opis:
The increase in natural gas consumption by the general public and industry development, in particular the petrochemical and chemical industries, has made increasing the world interest in using gas replacement for natural gas, both as mixtures of flammable gases and gas mixtures as LPG with air (SNG - Synthetic Natural Gas). Economic analysis in many cases prove that to ensure interchangeability of gas would cost less than the increase in pipeline capacity to deliver the same quantity of natural gas. In addition, SNG systems and installations, could be considered as investments to improve security and flexibility of gas supply. Known existing methods for determining the interchangeability of gases in gas gear based on Wobbe index, which determines the heat input and the burning rate tide, which in turn is related to flame stability. Exceeding the Wobbe index of a value increases the amount of carbon monoxide in the exhaust than the permissible concentration. Methods of determining the interchangeability of gases is characterized by a gas in relation to the above-described phenomena by means of quantitative indicators, or using diagrams interchangeability, where the gas is characterized by the position of a point in a coordinate system. The best known method for determining the interchangeability of gases is Delbourg method, in which the gas is characterized by the revised (expanded) Wobbe Index (Wr), the combustion potential, rate of soot formation (Ich) and the ratio of the formation of yellow ends (Ij). Universal way to determine the interchangeability of gas is also Weaver accounting method. It does not require determination of the reference gas. It is designed for utensils for household gas and gas pressure p = 1.25 kPa. The criteria and definition of gas interchangeability volatility in practice to the combustion in a gas gear. In the case of gas exchange in industrial furnaces, interchangeability criteria are usually not very useful because of other conditions of combustion and heat exchange. In industrial reheating furnace gas is combusted in a sealed combustion chambers. Air supply is regulated. The exhaust gases are discharged into canals and the chimney to the atmosphere. The temperature difference between load (fuel gas) and the flame is much less than in the case of gas household appliances. In the furnace heat exchange takes place mainly by radiation in 85% to 95%. The value of heat flux flowing from the gas to a heated charge is not proportional to the heat load burners. Interchangeability of gas is linked by adding to natural gas, a certain amount of gas that is a substitute for natural gas in meeting the criteria for substitution in order to ensure certainty of supply of natural gas to customers. Gases that can be used in the processes of blending and used as replacement gases are mainly a mixture of propane and propane - butane (LPG - Liquid Petroleum Gas), landfill gas or biogas (LFG - Landfill Gas) and dimethyl ether (DME). One of the more well-known gas mixtures used in many countries around the world to compensate for peak demands is a mixture containing about 75% of natural gas and approximately 25% propane / air (LPG / air). Also in Poland is prepared to amend the provisions in this regard (at this moment - oxygen in the gas network can not exceed 0.2%). In this paper, the calculations of interchangeability of gas mixtures LFG - LPG and LPG - air (SNG) for natural gas was made. It was determined whether the analyzed mixtures have similar stable flame zones regardless of the quality of LFG fuel and whether they may in whole or in part replace CH4, without any modification of equipment suction air for combustion. The obtained results will determine whether the fuel can be used as a replacement for natural gas used in such household appliances and, possibly, industrial burners. In connection with the possibility of changes in the quality of LFG, depending on such factors as storage time, as pre-treatment, will be determined the degree of interchangeability of LFG as a fuel mixed with regard to its quality.
Wzrost zużycia gazu ziemnego przez odbiorców komunalnych oraz rozwój przemysłu w szczególności petrochemicznego i chemicznego sprawił, że na całym świecie wzrosło zainteresowanie zastosowaniem gazów zamiennych za gaz ziemny, zarówno jako mieszanin gazów palnych jak i jako mieszanin gazów płynnych z powietrzem (SNG - syntetyczny gaz ziemny). Przeprowadzane analizy ekonomiczne w wielu przypadkach dowodzą, że zapewnienie wymienności paliwa gazowego kosztowało by mniej niż zwiększenie przepustowości gazociągów dla dostarczenia tej samej ilości gazu ziemnego. Ponadto systemy i instalacje SNG, można by uznać za inwestycje poprawiające bezpieczeństwo i elastyczność dostaw gazu. Znane dotychczasowe metody określania zamienności gazów w przyborach gazowych oparte są na liczbie Wobbego, która decyduje o obciążeniu cieplnym przyboru i szybkości spalania, z którą z kolei związana jest stabilność płomienia. Przekroczenie liczby Wobbego o pewną wartość powoduje wzrost ilości tlenku węgla w spalinach ponad dopuszczalne stężenie. Sposoby określające wymienność gazów charakteryzują dany gaz w odniesieniu do opisanych wyżej zjawisk przy pomocy wskaźników liczbowych lub za pomocą diagramów wymienności, na których gaz jest scharakteryzowany przez położenie punktu w układzie współrzędnych. Najbardziej znaną metodą określenia zamienności gazów jest metoda Delbourga, w której gaz scharakteryzowany jest przez skorygowaną (rozszerzoną) liczbę Wobbego (Wr), potencjał spalania, współczynnik tworzenia się sadzy (Ich) oraz współczynnik powstawania żółtych końców (Ij). Uniwersalnym sposobem określenia zamienności gazu jest również metoda rachunkowa Weavera. Nie wymaga ona określenia gazu odniesienia. Przeznaczona jest dla przyborów gazowych użytku domowego i ciśnienia gazu p = 1,25 kPa. Kryteria zmienności gazów i definicja zamienności w praktyce dotyczy spalania gazów w przyborach gazowych. W przypadku wymiany gazu w piecach przemysłowych kryteria zamienności są zazwyczaj mało przydatne z powodu innych warunków spalania i wymiany ciepła. W przemysłowych piecach grzewczych gaz spala się w zamkniętych komorach spalania. Dopływ powietrza jest regulowany. Spaliny odprowadzane są kanałami i kominem do atmosfery. Różnica temperatur nagrzewanego wsadu (paliwa gazowego) i płomienia jest dużo mniejsza niż w przypadku przyborów gazowych domowego użytku. W piecach wymiana ciepła odbywa się głównie przez promieniowanie w 85% do 95%. Wartość strumienia cieplnego płynącego od gazu do ogrzewanego wsadu nie jest proporcjonalne do obciążenia cieplnego palników. Zamienność gazów związana jest dodawaniem do gazu ziemnego pewnej ilości gazu będącego substytutem naturalnego gazu ziemnego przy spełnieniu kryteriów zamienności w celu zagwarantowania pewności dostaw gazu ziemnego do odbiorców. Gazy mogące być użyte w procesach mieszania i wykorzystane jako gazy zamienne to przede wszystkim propan lub mieszaniny propan - butan (LPG - z j.ang. Liquid Petroleum Gas), gazy wysypiskowe lub biogazy (LFG - z j.ang. Landfilll Gas) oraz eter dimetylowy (DME). Jedną z bardziej znanych mieszanek gazowych stosowanych w wielu krajach świata do wyrównywania szczytowych zapotrzebowań jest mieszanka zawierająca ok. 75% gazu ziemnego i ok. 25% mieszanki propan / powietrze, (LPG / air). Również w Polsce przygotowywana jest zmiana przepisów w tym względzie (obecnie zawartość tlenu w sieci gazowej nie może przekraczać 0,2 %). W artykule przeprowadzono obliczenia zamienności mieszanin paliw gazowych LFG - LPG i LPG - powietrze (SNG) za gaz ziemny. Określono czy analizowane mieszaniny mają podobne stabilne strefy płomienia niezależnie od jakości LFG i czy paliwa te mogą w pełni lub w części zastąpić CH4 , bez żadnych modyfikacji urządzeń zasysających powietrze do spalania. Uzyskane wyniki, pozwolą stwierdzić, czy paliwa te mogą być wykorzystane jako zamienne za gaz ziemny użytkowany we wspomnianych urządzeniach gospodarstwa domowego i ewentualnie palnikach przemysłowych. W związku z możliwością zmian jakości LFG w zależności od takich czynników jak czas składowania, sposób obróbki wstępnej, zostanie określony również stopień wymienności LFG jako paliwa mieszanego w odniesieniu do jego jakości.
Źródło:
Archives of Mining Sciences; 2012, 57, 2; 351-362
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza możliwości zamienności i zmian jakościowych gazów w aspekcie bezpiecznego użytkowania i wspomagania zasilania sieci gazu ziemnego z zastosowaniem równoważnych mieszanin gazowych
Analysis of the possibility of interchangeability and gas quality changes in terms of safe handling and supply natural gas networks using equivalent gas mixtures
Autorzy:
Łaciak, M.
Powiązania:
https://bibliotekanauki.pl/articles/299343.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
zamienność gazów
gaz ziemny
szczytowe zapotrzebowanie
gaz płynny
biogaz
liczba Wobbego
interchangeability of gases
natural gas
peak shaving
liquid petroleum gas
landfill gas
Wobbe index
Opis:
Wzrost zużycia gazu ziemnego przez odbiorców komunalnych oraz rozwój przemysłu w szczególności petrochemicznego i chemicznego sprawił, że na całym świecie wzrosło zainteresowanie zastosowaniem gazów zamiennych za gaz ziemny, zarówno jako mieszanin gazów palnych, jak i jako mieszanin gazów płynnych z powietrzem (SNG - syntetyczny gaz ziemny). Przeprowadzane analizy ekonomiczne w wielu przypadkach dowodzą, że zapewnienie wymienności paliwa gazowego kosztowało by mniej niż zwiększenie przepustowości gazociągów dla dostarczenia tej samej ilości gazu ziemnego. Ponadto systemy i instalacje SNG, można by uznać za inwestycje poprawiające bezpieczeństwo i elastyczność dostaw gazu. Znane dotychczasowe metody określania zamienności gazów w przyborach gazowych oparte są na liczbie Wobbego, która decyduje o obciążeniu cieplnym przyboru i szybkości spalania, z którą z kolei związana jest stabilność płomienia. Przekroczenie liczby Wobbego o pewną wartość powoduje wzrost ilości tlenku węgla w spalinach ponad dopuszczalne stężenie. Sposoby określające wymienność gazów charakteryzują dany gaz w odniesieniu do opisanych wyżej zjawisk za pomocą wskaźników liczbowych lub za pomocą diagramów wymienności, na których gaz jest scharakteryzowany przez położenie punktu w układzie współrzędnych. Najbardziej znaną metodą określenia zamienności gazów jest metoda Delbourga, w której gaz scharakteryzowany jest przez skorygowaną (rozszerzoną) liczbę Wobbego (Wr), potencjał spalania, współczynnik tworzenia się sadzy (Ich) oraz współczynnik powstawania żółtych końców (Ij). Uniwersalnym sposobem określenia zamienności gazu jest również metoda rachunkowa Weavera. Nie wymaga ona określenia gazu odniesienia. Przeznaczona jest dla przyborów gazowych użytku domowego i ciśnienia gazu p = 1,25 kPa. Kryteria zmienności gazów i definicja zamienności w praktyce dotyczy spalania gazów w przyborach gazowych. W przypadku wymiany gazu w piecach przemysłowych kryteria zamienności są zazwyczaj mało przydatne z powodu innych warunków spalania i wymiany ciepła. W przemysłowych piecach grzewczych gaz spala się w zamkniętych komorach spalania. Dopływ powietrza jest regulowany. Spaliny odprowadzane są kanałami i kominem do atmosfery. Różnica temperatur nagrzewanego wsadu (paliwa gazowego) i płomienia jest dużo mniejsza niż w przypadku przyborów gazowych domowego użytku. W piecach wymiana ciepła odbywa się głównie przez promieniowanie w 85% do 95%. Wartość strumienia cieplnego płynącego od gazu do ogrzewanego wsadu nie jest proporcjonalne do obciążenia cieplnego palników. Zamienność gazów związana jest dodawaniem do gazu ziemnego pewnej ilości gazu będącego substytutem naturalnego gazu ziemnego przy spełnieniu kryteriów zamienności w celu zagwarantowania pewności dostaw gazu ziemnego do odbiorców. Gazy mogące być użyte w procesach mieszania i wykorzystane jako gazy zamienne to przede wszystkim propan lub mieszaniny propan - butan (LPG - Liquid Petroleum Gas), gazy wysypiskowe lub biogazy (LFG - Landfilll Gas) oraz eter dimetylowy (DME). Jedną z bardziej znanych mieszanek gazowych stosowanych w wielu krajach świata do wyrównywania szczytowych zapotrzebowa jest mieszanka zawierająca ok. 75% gazu ziemnego i ok. 25% mieszanki propan / powietrze, (LPG / air). Również w Polsce przygotowywana jest zmiana przepisów w tym względzie (obecnie zawartość tlenu w sieci gazowej nie może przekraczać 0,2%). W artykule przeprowadzono obliczenia zamienności mieszanin paliw gazowych LFG - LPG i LPG - powietrze (SNG) za gaz ziemny. Określono, czy analizowane mieszaniny mają podobne stabilne strefy płomienia niezależnie od jakości LFG i czy paliwa te mogą w pełni lub w części zastąpić CH4, bez żadnych modyfikacji urządzeń zasysających powietrze do spalania. Uzyskane wyniki, pozwolą stwierdzić, czy paliwa te mogą być wykorzystane jako zamienne za gaz ziemny użytkowany we wspomnianych urządzeniach gospodarstwa domowego i ewentualnie palnikach przemysłowych. W związku z możliwością zmian jakości LFG w zależności od takich czynników jak czas składowania, sposób obróbki wstępnej, zostanie określony również stopień wymienności LFG jako paliwa mieszanego w odniesieniu do jego jakości.
The increase in natural gas consumption by the general public and industry development, in particular the petrochemical and chemical industries, has made increasing the world interest in using gas replacement for natural gas, both as mixtures of flammable gases and gas mixtures as LPG with air (SNG - Synthetic Natural Gas). Economic analysis in many cases prove that to ensure interchangeability of gas would cost less than the increase in pipeline capacity to deliver the same quantity of natural gas. In addition, SNG systems and installations, could be considered as investments to improve security and flexibility of gas supply. Known existing methods for determining the interchangeability of gases in gas gear based on Wobbe index, which determines the heat input and the burning rate tide, which in turn is related to flame stability. Exceeding the Wobbe index of a value increases the amount of carbon monoxide in the exhaust than the permissible concentration. Methods of determining the interchangeability of gases is characterized by a gas in relation to the above-described phenomena by means of quantitative indicators, or using diagrams interchangeability, where the gas is characterized by the position of a point in a coordinate system. The best known method for determining the interchangeability of gases is Delbourg method, in which the gas is characterized by the revised (expanded) Wobbe Index (Wr), the combustion potential, rate of soot formation (Ich) and the ratio of the formation of yellow ends (Ij). Universal way to determine the interchangeability of gas is also Weaver accounting method. It does not require determination of the reference gas. It is designed for utensils for household gas and gas pressure p = 1.25 kPa. The criteria and definition of gas interchangeability volatility in practice to the combustion in a gas gear. In the case of gas exchange in industrial furnaces, interchangeability criteria are usually not very useful because of other conditions of combustion and heat exchange. In industrial reheating furnace gas is combusted in a sealed combustion chambers. Air supply is regulated. The exhaust gases are discharged into canals and the chimney to the atmosphere. The temperature difference between load (fuel gas) and the flame is much less than in the case of gas household appliances. In the furnace heat exchange takes place mainly by radiation in 85% to 95%. The value of heat flux flowing from the gas to a heated charge is not proportional to the heat load burners. Interchangeability of gas is linked by adding to natural gas, a certain amount of gas that is a substitute for natural gas in meeting the criteria for substitution in order to ensure certainty of supply of natural gas to customers. Gases that can be used in the processes of blending and used as replacement gases are mainly a mixture of propane and propane - butane (LPG - Liquid Petroleum Gas), landfill gas or biogas (LFG - Landfill Gas) and dimethyl ether (DME). One of the more well-known gas mixtures used in many countries around the world to compensate for peak demands is a mixture containing about 75% of natural gas and approximately 25% propane / air (LPG / air). Also in Poland is prepared to amend the provisions in this regard (at this moment - oxygen in the gas network can not exceed 0.2%). In this paper, the calculations of interchangeability of gas mixtures LFG - LPG and LPG - air (SNG) for natural gas was made. It was determined whether the analyzed mixtures have similar stable flame zones regardless of the quality of LFG fuel and whether they may in whole or in part replace CH4, without any modification of equipment suction air for combustion. The obtained results will determine whether the fuel can be used as a replacement for natural gas used in such household appliances and, possibly, industrial burners. In connection with the possibility of changes in the quality of LFG, depending on such factors as storage time, as pre-treatment, will be determined the degree of interchangeability of LFG as a fuel mixed with regard to its quality.
Źródło:
Wiertnictwo, Nafta, Gaz; 2011, 28, 1-2; 253-261
1507-0042
Pojawia się w:
Wiertnictwo, Nafta, Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dywersyfikacja w sektorze paliw gazowych
Diversification in the fuel gas sector
Autorzy:
Niedzielko, J.
Tyszkiewicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/403127.pdf
Data publikacji:
2010
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
gaz
gaz płynny
gaz ziemny
gazyfikacja
złoża gazu
gas
LPG
natural gas
gasification
gas deposits
Opis:
Na rynku paliwowym nastąpiły diametralne zmiany. Niepewność cen oraz względy ekologiczne zmuszają do zastanowienia się nad wyborem najbardziej racjonalnego rodzaju paliwa. Gaz jest paliwem przyjaznym dla środowiska a dzięki wprowadzaniu coraz to nowych technologii, łatwości obsługi z punktu widzenia użytkownika oraz jego ogólnej dostępności może trafić do każdego odbiorcy. Paliwo to znajduje swoje zastosowanie zarówno w gospodarstwie domowym, przemyśle, a także w motoryzacji. Należy poznać różne odmiany gazu oraz ich właściwości, aby prawidłowo je wykorzystać. Ciągle odkrywane są nowe źródła pozyskiwania tego surowca - także na terenie Polski. Opracowywane są technologie ułatwiające, a w niektórych przypadkach umożliwiające, jego wydobycie.
The fuel market has been changed. The hesitancy of prices and environmental considerations force us to think about the most efficient type of fuel. Gas is an environmental friendly fuel. Because of the newest technologies it is generally approachable and used in the householders, industry and motorization. It is necessary to know the different kinds of gas and their properties in order to use them properly. The new gas poles are discovered - also in Poland. New technologies help or even let us extract gas from new places.
Źródło:
Budownictwo i Inżynieria Środowiska; 2010, 1, 3; 235-240
2081-3279
Pojawia się w:
Budownictwo i Inżynieria Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies