Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "non-uniform grid" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Non-uniform Rectilinear Grid in the Waveguide Modeling of the Vocal Tract
Autorzy:
Qureshi, Tahir Mushtaq
Syed, Khalid Saifullah
Zafar, Asim
Powiązania:
https://bibliotekanauki.pl/articles/1953545.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
non-linear mesh
waveguide
delay lines
Opis:
For many years, a digital waveguide model is being used for sound propagation in the modeling of the vocal tract with the structured and uniform mesh of scattering junctions connected by same delay lines. There are many varieties in the formation and layouts of the mesh grid called topologies. Current novel work has been dedicated to the mesh of two-dimensional digital waveguide models of sound propagation in the vocal tract with the structured and non-uniform rectilinear grid in orientation. In this work, there are two types of delay lines: one is called a smaller-delay line and other is called a larger-delay line. The larger-delay lines are the double of the smaller delay lines. The scheme of using the combination of both smaller- and larger-delay lines generates the non-uniform rectilinear two-dimensional waveguide mesh. The advantage of this approach is the ability to get a transfer function without fractional delay. This eliminates the need to get interpolation for the approximation of fractional delay and give efficient simulation for sound wave propagation in the two-dimensional waveguide modeling of the vocal tract. The simulation has been performed by considering the vowels /ɔ/, /a/, /i/ and /u/ in this work. By keeping the same sampling frequency, the standard two-dimensional waveguide model with uniform mesh is considered as our benchmark model. The results and efficiency of the proposed model have compared with our benchmark model.
Źródło:
Archives of Acoustics; 2020, 45, 4; 585-600
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Difference scheme for differential-difference problems with small shifts arising in computational model of neuronal variability
Autorzy:
Kodipaka, Mamatha
Emineni, Siva Prasad
Kolloju, Phaneendra
Powiązania:
https://bibliotekanauki.pl/articles/2174179.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
siatka niejednorodna
równanie różniczkowe
warstwa brzegowa
non-uniform grid
differential-difference equations
boundary layer
Opis:
The solution of differential-difference equations with small shifts having layer behaviour is the subject of this study. A difference scheme is proposed to solve this equation using a non-uniform grid. With the non-uniform grid, finite - difference estimates are derived for the first and second-order derivatives. Using these approximations, the given equation is discretized. The discretized equation is solved using the tridiagonal system algorithm. Convergence of the scheme is examined. Various numerical simulations are presented to demonstrate the validity of the scheme. In contrast to other techniques, maximum errors in the solution are organized to support the method. The layer behaviour in the solutions of the examples is depicted in graphs.
Źródło:
International Journal of Applied Mechanics and Engineering; 2022, 27, 1; 91--106
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An extended finite difference method for singular perturbation problems on a non-uniform mesh
Autorzy:
Swarnakar, D.
Kumar, V. Ganesh
Soujanya, G. B. S. L.
Powiązania:
https://bibliotekanauki.pl/articles/2174215.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
siatka niejednorodna
metoda różnic skończonych
warstwa graniczna
non uniform grid
finite difference method
singular perturbation
boundary layer
Opis:
An extended second order finite difference method on a variable mesh is proposed for the solution of a singularly perturbed boundary value problem. A discrete equation is achieved on the non uniform mesh by extending the first and second order derivatives to the higher order finite differences. This equation is solved efficiently using a tridiagonal solver. The proposed method is analysed for convergence, and second order convergence is derived. Model examples are solved by the proposed scheme and compared with available methods in the literature to uphold the method.
Źródło:
International Journal of Applied Mechanics and Engineering; 2022, 27, 1; 203--214
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies