Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural PID" wg kryterium: Wszystkie pola


Wyświetlanie 1-9 z 9
Tytuł:
Multi motor neural PID relative coupling speed synchronous control
Autorzy:
Zhang, Yonglong
An, Yuejun
Wang, Guangyu
Kong, Xiangling
Powiązania:
https://bibliotekanauki.pl/articles/141259.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy control
multi motor synchronous control
neural PID
relative coupling control
vacuum pump
Opis:
When the traditional multi-motor speed synchronous control strategy is applied to the vacuum pump system, it is prone to the drawbacks of large synchronization error. In this paper, a simplified mathematical model of the motor for a vacuum pump is established and the transfer function is introduced, which weakens the multivariable, strong coupling and nonlinear characteristics of the motor system. According to the basic principle of the relative coupling control strategy, the neural network Proportion Integration Differentiation (PID) is introduced as a speed compensator in this system. It effectively improves the synchronization and anti-interference ability of the multi motor
Źródło:
Archives of Electrical Engineering; 2020, 69, 1; 69-88
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural network-PID controller for roll fin stabilizer
Autorzy:
Ghassemi, H.
Dadmarzi, F. H.
Ghadimi, P.
Ommani, B.
Powiązania:
https://bibliotekanauki.pl/articles/259283.pdf
Data publikacji:
2010
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
Fin stabilizer
neural network
PID control
restoring force
Opis:
Fin stabilizers are very effective devices for controlling the ship roll motion against external wave-generated moments. Lift forces due to flow around fin with an angle of attack produce anti - roll moment. Therefore control of attack angle plays important role in reducing roll of ships. This paper presents results of using a combined neural network and PID for roll control of ship with small draught. Numerical results are given of around-fin flow analysis with considering free surface effect modelled by neural network and imposed to controlling loop. Hydraulic machinery constraints are also considered in the modelling. The obtained results show good performance of the controller in reducing roll amplitude in random seas. The approach can be used for any irregular sea conditions.
Źródło:
Polish Maritime Research; 2010, 2; 23-28
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ dodania małej sieci neuronowej do regulatora PID na jakość regulacji
Addition of small neural network to PID controller and its effect on quality of control
Autorzy:
Lis, M.
Kozierski, P.
Powiązania:
https://bibliotekanauki.pl/articles/377616.pdf
Data publikacji:
2013
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
sieć neuronowa
regulator PID
przetwornica Buck
Opis:
W artykule podjęto próbę implementacji połączenia regulatora PID oraz małej sieci neuronowej, zbadano wpływ takiego połączenia na jakość regulacji. Obiektem badanym jest przetwornica typu Buck sterowana prądem. Głównym kryterium badania było dobranie sieci pod kątem ograniczenia zasobów systemu sterowania. Porównano sieci o jednym, dwóch oraz trzech neuronach w warstwie ukrytej dla różnych punktów pracy przetwornicy.
The article attempts to implement PID controller and a small neural network connected together and explore the effect of this combination on the quality of regulation. The test object is a buck converter controlled with current. The main criterion for selection of the study was resource constraints in terms of the control system. Neural network has been compared with one, two and three neurons in the hidden layer for different operating points of the converter.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2013, 76; 205-211
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identification of water treatment plant based on feedforward neural network
Autorzy:
Mohamed, A. F.
Radwa, H. Z.
Powiązania:
https://bibliotekanauki.pl/articles/971051.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
water treatment plant
coagulation process
PID
neural network control
Opis:
Coagulation process is the main process in conventional water treatment process sequence. It influences the following treatment process aspects: maintaining plant efficiency and increasing the quality of the produced water. This is accomplished by adding chemicals to raw water, such as alum sulphate. To secure the appropriate plant performance, a mathematical model is proposed in this paper for the coagulation unit, followed by the development of the control strategy. Classic PID and neural network based controller regulating the process are used. Tests were performed, based on the real data for water treatment, using MATLAB/SIMULINK. Simulation results showed better values for both settling time and overshoot in the case of using neural network based controller than PID.
Źródło:
Control and Cybernetics; 2017, 46, 3; 247-258
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neurocontrolled car speed system
Autorzy:
Nakonechnyi, Markiyan
Ivakhiv, Orest
Świsulski, Dariusz
Powiązania:
https://bibliotekanauki.pl/articles/27314203.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
neural controller
PID-algorithm of control
dynamic object
neural networks
electric car
speed control
Opis:
The features of the synthesis of neural controllers for the car speed control system are considered in this article. The task of synthesis is to determine the weight coefficients of neural networks that provide the implementation of proportional and proportional-integralderivative control laws. The synthesis of controllers is based on an approach that uses a reversed model of the standard. A model of the car speed control system with the use of permitting subsystems has been developed, with the help of the synthesized controller that is connected under certain specified conditions. With the iterative programming and mathematical modeling environment in MATLAB, and using the Simulink package, a structural scheme for controlling the speed of the car was constructed and simulated using synthesized neural controllers.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2022, 16, 3; 13--21
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system
Autorzy:
Pedro, J. O.
Dahunsi, O. A.
Powiązania:
https://bibliotekanauki.pl/articles/907825.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć neuronowa
sterowanie bezpośrednie
sterowanie ze sprzężeniem zwrotnym
regulacja PID
komfort jazdy
układ zawieszenia
neural networks
direct adaptive control
feedback linearization control
PID control
ride comfort
suspension system
servo-hydraulics
Opis:
This paper presents the design of a neural network based feedback linearization (NNFBL) controller for a two degree-offreedom (DOF), quarter-car, servo-hydraulic vehicle suspension system. The main objective of the direct adaptive NNFBL controller is to improve the system's ride comfort and handling quality. A feedforward, multi-layer perceptron (MLP) neural network (NN) model that is well suited for control by discrete input-output linearization (NNIOL) is developed using input-output data sets obtained from mathematical model simulation. The NN model is trained using the Levenberg- Marquardt optimization algorithm. The proposed controller is compared with a constant-gain PID controller (based on the Ziegler-Nichols tuning method) during suspension travel setpoint tracking in the presence of deterministic road disturbance. Simulation results demonstrate the superior performance of the proposed direct adaptive NNFBL controller over the generic PID controller in rejecting the deterministic road disturbance. This superior performance is achieved at a much lower control cost within the stipulated constraints.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2011, 21, 1; 137-147
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowy regulator prędkości obrotowej odporny na zmiany bezwładności
A neural speed controller robust to inertia changes
Autorzy:
Jakubowski, M.
Nowakowski, K.
Zawirski, K.
Powiązania:
https://bibliotekanauki.pl/articles/157600.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
regulator neuronowy
sterowanie neuronowe
sztuczna inteligencja
uczenie maszynowe
PID
neural controller
neural controlling
artificial intelligence
machine learning
Opis:
W ramach niniejszej pracy zaprezentowany został neuronowy regulator prędkości obrotowej odporny na zmiany bezwładności. Celem pracy było opracowanie struktury regulatora oraz dobór optymalnego algorytmu uczenia. Stworzony regulator sterował pracą silnika prądu stałego. Metodologia prowadzonych badań zakładała zbadanie działania układu w szerokim zakresie zmian momentu obciążenia oraz bezwładności. Projektowanie przeprowadzono w taki sposób, aby badany układ napędowy wykazywały dobre właściwości regulacyjne w szerokim zakresie zmiany bezwładności obciążenia. Proces syntezy regulatora został szczegółowo opisany w ramach niniejszej pracy. Analizie poddano szereg badań symulacyjnych, w ramach których rozpatrywano wybrane wskaźniki jakości dla różnych wartości bezwładności oraz momentu obciążenia. Dokonano także analizy porównawczej badanego regulatora neuronowego z optymalnie nastrojonym klasycznym regulatorem PID. Uzyskane wyniki symulacyjne zostały przeniesione na grunt implementacji fizycznego obiektu sterowania.
This paper presents a neural network speed controller that is robust to inertia changes. The main object of this study was to establish the structure of the controller and to create an optimal learning algorithm. Within the project, the created controller steered the operation of a DC motor. The methodology of the research involved studying the effects of the system over a wide range of load torque and inertia changes. The project was carried out in a such way that good regulatory properties over a wide range of inertia changes were performed for the drive systems. The synthesis of the controller is described in details in this paper. The analysis of series simulation studies including selected quality indicators for different values of inertia and different load torque is conducted. Moreover, the comparative analysis of the neural control and the optimally tuned classical PID controller is performed. The obtained simulation results were used for implementation of a physical control object.
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 10, 10; 840-844
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation and Analysis of Sintering Furnace Temperature Based on Fuzzy Neural Network Control
Autorzy:
Chaoxin, Zou
Rong, Li
Zhiping, Xie
Ming, Su
Jingshi, Zeng
Xu, Ji
Xiaoli, Ye
Ye, Wang
Powiązania:
https://bibliotekanauki.pl/articles/1837849.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy neural network
furnace
sintering
temperature control
PID
sieć neuronowa rozmyta
piec
spiekanie
kontrola temperatury
Opis:
Aiming at the problems of delay and couple in the sintering temperature control system of lithium batteries, a fuzzy neural network controller that can solve complex nonlinear temperature control is designed in this paper. The influence of heating voltage, air inlet speed and air inlet volume on the control of temperature of lithium battery sintering is analyzed, and a fuzzy control system by using MATLAB toolbox is established. And on this basis, a fuzzy neural network controller is designed, and then a PID control system and a fuzzy neural network control system are established through SIMULINK. The simulation shows that the response time of the fuzzy neural network control system compared with the PID control system is shortened by 24s, the system stability adjustment time is shortened by 160s, and the maximum overshoot is reduced by 6.1%. The research results show that the fuzzy neural network control system can not only realize the adjustment of lithium battery sintering temperature control faster, but also has strong adaptability, fault tolerance and anti-interference ability.
Źródło:
Archives of Foundry Engineering; 2021, 21, 1; 23-30
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation and Analysis of Sintering Furnace Temperature Based on Fuzzy Neural Network Control
Autorzy:
Chaoxin, Zou
Rong, Li
Zhiping, Xie
Ming, Su
Jingshi, Zeng
Xu, Ji
Xiaoli, Ye
Ye, Wang
Powiązania:
https://bibliotekanauki.pl/articles/1837792.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy neural network
furnace
sintering
temperature control
PID
sieć neuronowa rozmyta
piec
spiekanie
kontrola temperatury
Opis:
Aiming at the problems of delay and couple in the sintering temperature control system of lithium batteries, a fuzzy neural network controller that can solve complex nonlinear temperature control is designed in this paper. The influence of heating voltage, air inlet speed and air inlet volume on the control of temperature of lithium battery sintering is analyzed, and a fuzzy control system by using MATLAB toolbox is established. And on this basis, a fuzzy neural network controller is designed, and then a PID control system and a fuzzy neural network control system are established through SIMULINK. The simulation shows that the response time of the fuzzy neural network control system compared with the PID control system is shortened by 24s, the system stability adjustment time is shortened by 160s, and the maximum overshoot is reduced by 6.1%. The research results show that the fuzzy neural network control system can not only realize the adjustment of lithium battery sintering temperature control faster, but also has strong adaptability, fault tolerance and anti-interference ability.
Źródło:
Archives of Foundry Engineering; 2021, 21, 1; 23-30
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies