Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "minimax fractional programming" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Optimality conditions and duality for generalized fractional minimax programming involving locally Lipschitz (b,Ψ,Φ,ρ) -univex functions
Autorzy:
Antczak, T.
Mishra, S. K.
Upadhyay, B. B.
Powiązania:
https://bibliotekanauki.pl/articles/206666.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
generalized fractional minimax programming
locally Lipschitz (b,Ψ,Φ,ρ)-univex function
optimality conditions
duality
Opis:
In this paper, we are concerned with optimality conditions and duality results of generalized fractional minimax programming problems. Sufficient optimality conditions are established for a class of nondifferentiable generalized fractional minimax programming problems, in which the involved functions are locally Lipschitz (b,Ψ,Φ,ρ)-univex. Subsequently, these optimality conditions are utilized as a basis for constructing various parametric and nonparametric duality models for this type of fractional programming problems and proving appropriate duality theorems.
Źródło:
Control and Cybernetics; 2018, 47, 1; 5-32
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Set-valued minimax fractional programming problems under -cone arcwise connectedness
Autorzy:
Das, Koushik
Powiązania:
https://bibliotekanauki.pl/articles/2183488.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
convex cone
set-valued map
contingent epiderivative
arcwise connectedness
duality
Opis:
In this paper, we consider a set-valued minimax fractional programming problem (MFP), where the objective as well as constraint maps are set-valued. We introduce the notion of ρ- cone arcwise connectedness of set-valued maps as a generalization of cone arcwise connected set-valued maps. We establish the sufficient Karush-Kuhn-Tucker (KKT) conditions for the existence of minimizers of the problem (MFP) under ρ-cone arcwise connectedness assumption. Further, we study the Mond-Weir (MWD), Wolfe (WD), and mixed (MD) types of duality models and prove the corresponding weak, strong, and converse duality theorems between the primal (MFP) and the corresponding dual problems under ρ-cone arcwise connectedness assumption.
Źródło:
Control and Cybernetics; 2022, 51, 1; 43--69
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sufficient optimality condition and duality of nondifferentiable minimax ratio constraint problems under (p, r)-ρ-(η, θ)-invexity
Autorzy:
Kailey, Navdeep
Sethi, Sonali
Saini, Shivani
Powiązania:
https://bibliotekanauki.pl/articles/2183486.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
minimax fractional programming
optimality conditions
duality
generalized invexity
Opis:
There are several classes of decision-making problems that explicitly or implicitly prompt fractional programming problems. Portfolio selection problems, agricultural planning, information transfer, numerical analysis of stochastic processes, and resource allocation problems are just a few examples. The huge number of applications of minimax fractional programming problems inspired us to work on this topic. This paper is concerned with a nondifferentiable minimax fractional programming problem. We study a parametric dual model, corresponding to the primal problem, and derive the sufficient optimality condition for an optimal solution to the considered problem. Further, we obtain the various duality results under (p, r)-ρ-(η, θ)-invexity assumptions. Also, we identify a function lying exclusively in the class of (−1, 1)-ρ-(η, θ)- invex functions but not in the class of (1,−1)-invex functions and convex function already existing in the literature. We have given a non-trivial model of nondifferentiable minimax problem and obtained its optimal solution using optimality results derived in this paper.
Źródło:
Control and Cybernetics; 2022, 51, 1; 71--88
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies