Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "medyczne systemy informacji" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Optimal acoustic model complexity selection in polish medical speech recognition
Autorzy:
Sas, J.
Poreba, T.
Powiązania:
https://bibliotekanauki.pl/articles/333361.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie mowy
modele języka
medyczne systemy informacji
speech recognition
language models
medical information systems
Opis:
In the paper, the method of acoustic model complexity level selection for automatic speech recognition is proposed. Selection of the appropriate model complexity affects significantly the accuracy of speech recognition. For this reason the selection of the appropriate complexity level is crucial for practical speech recognition applications, where end user effort related to the implementation of speech recognition system is important. We investigated the correlation between speech recognition accuracy and two popular information criteria used in statistical model evaluation: Bayesian Information Criterion and Akaike Information Criterion computed for applied acoustic models. Experiments carried out for language models related to general medicine texts and radiology diagnostic reporting in CT and MR showed strong correlation of speech recognition accuracy and BIC criterion. Using this dependency, the procedure of Gaussian mixture count selection for acoustic model was proposed. Application of this procedure makes it possible to create the acoustic model maximizing the speech recognition accuracy without additional computational costs related to alternative cross-validation approach and without reduction of training set size, which is unavoidable in the case of cross-validation approach.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 17; 115-122
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of local bidirectional language model to error correction in polish medical speech recognition
Autorzy:
Sas, J.
Powiązania:
https://bibliotekanauki.pl/articles/333597.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie mowy
modele języka
medyczne systemy informacji
speech recognition
language models
medical information systems
Opis:
In the paper, the method of short word deletion errors correction in automatic speech recognition is described. Short word deletion errors appear to be a frequent error type in Polish speech recognition. The proposed speech recognition process consists of two stages. At the first stage the utterance is recognized by a typical speech recognizer based on forward bigram language model. At the second stage the word sequence recognized by the first stage recognizer is analyzed and such pairs of adjacent words in the recognized sequence are localized, which are likely to be separated by a short word like conjunction or preposition. The probability of short word appearance in context of found words is evaluated using centered trigrams and backward bigram language model for short words prone to deletion. The set of probabilistic language properties used to correct deletions is called here Local Bidirectional Language Model (in contrast to purely forward or backward model used typically in speech recognition). The decision of short word insertion is based on comparison of deletion error probability of the first stage recognizer and the error probability of the decision based only on centered trigrams and backward model. Despite its simplicity, the method proved to be effective in correcting deletion errors of most frequently appearing Polish prepositions. The method was tested in application to medical spoken reports recognition, where the overall short word deletion error rate was reduced by almost 45%.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 15; 127-134
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies