Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "management algorithms" wg kryterium: Wszystkie pola


Tytuł:
The economics of deep and machine learning-based algorithms for COVID-19 prediction, detection, and diagnosis shaping the organizational management of hospitals
Autorzy:
Lăzăroiu, George
Gedeon, Tom
Rogalska, Elżbieta
Andronie, Mihai
Frajtova Michalikova, Katarina
Musova, Zdenka
Iatagan, Mariana
Uță, Cristian
Michalkova, Lucia
Kovacova, Maria
Ștefănescu, Roxana
Hurloiu, Iulian
Zabojnik, Stanislav
Stefko, Robert
Dijmărescu, Adrian
Dijmărescu, Irina
Geamănu, Marinela
Powiązania:
https://bibliotekanauki.pl/articles/39832736.pdf
Data publikacji:
2024
Wydawca:
Instytut Badań Gospodarczych
Tematy:
deep and machine learning
COVID 19
prediction
detection
diagnosis
organizational management
hospital
Opis:
Research background: Deep and machine learning-based algorithms can assist in COVID-19 image-based medical diagnosis and symptom tracing, optimize intensive care unit admission, and use clinical data to determine patient prioritization and mortality risk, being pivotal in qualitative care provision, reducing medical errors, and increasing patient survival rates, thus diminishing the massive healthcare system burden in relation to severe COVID-19 inpatient stay duration, while increasing operational costs throughout the organizational management of hospitals. Data-driven financial and scenario-based contingency planning, predictive modelling tools, and risk pooling mechanisms should be deployed for additional medical equipment and unforeseen healthcare demand expenses. Purpose of the article: We show that deep and machine learning-based and clinical decision making systems can optimize patient survival likelihood and treatment outcomes with regard to susceptible, infected, and recovered individuals, performing accurate analyses by data modeling based on vital and clinical signs, surveillance data, and infection-related biomarkers, and furthering hospital facility optimization in terms of intensive care unit bed allocation. Methods: The review software systems employed for article screening and quality evaluation were: AMSTAR, AXIS, DistillerSR, Eppi-Reviewer, MMAT, PICO Portal, Rayyan, ROBIS, and SRDR. Findings & value added: Deep and machine learning-based clinical decision support tools can forecast COVID-19 spread, confirmed cases, and infection and mortality rates for data-driven appropriate treatment and resource allocations in effective therapeutic and diagnosis protocol development, by determining suitable measures and regulations and by using symptoms and comorbidities, vital signs, clinical and laboratory data and medical records across intensive care units, impacting the healthcare financing infrastructure. As a result of heightened use of personal protective equipment, hospital pharmacy and medication, outpatient treatment, and medical supplies, revenue loss and financial vulnerability occur, also due to expenses related to hiring additional staff and to critical resource expenditures. Hospital costs for COVID-19 medical care, screening, treatment capacity expansion, and personal protective equipment can lead to further financial losses while affecting COVID-19 frontline hospital workers and patients.
Źródło:
Oeconomia Copernicana; 2024, 15, 1; 27-58
2083-1277
Pojawia się w:
Oeconomia Copernicana
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial intelligence algorithms and cloud computing technologies in blockchain-based fintech management
Autorzy:
Lăzăroiu, George
Bogdan, Mădălina
Geamănu, Marinela
Hurloiu, Lăcrămioara
Luminița, Luminița
Ștefănescu, Roxana
Powiązania:
https://bibliotekanauki.pl/articles/19901187.pdf
Data publikacji:
2023
Wydawca:
Instytut Badań Gospodarczych
Tematy:
artificial intelligence algorithms
cloud computing
blockchain
fintech
green and sustainable finance
banking
Opis:
Research background: Fintech development shapes corporate investment efficiency and economic growth with innovative tools, and can decrease financing constraints of enterprises, enabling direct and indirect financing and furthering inter-bank competition. Crowdfunding- and blockchain-based fintech operations harness deep and maching learning algorithms, augmented and virtual reality technologies, and big data analytics in mobile payment transactions. Purpose of the article: We show that fintechs have reconfigured financial service delivery by harnessing AI-based data-driven algorithms and cloud and blockchain technologies. Fintech optimizes financial organization and services, economic structures and growth, data analysis, and digital banking performance.  Machine learning algorithms can streamline payment operation capabilities and process promptness, ensuring smooth operational flows, assessing risks, and detecting frauds and money laundering by historical data and customer behavior analysis across instant payment networks and infrastructures. Methods: Quality tools: AXIS, Eppi-Reviewer, PICO Portal, and SRDR. Search period: July 2023. Search terms: “fintech” + “artificial intelligence algorithms”, “cloud computing technologies”, and “blockchain technologies”. Selected sources: 40 out of 195. Published research inspected: 2023. Data visualization tools: Dimensions and VOSviewer. Reporting quality assessment tool: PRISMA. Findings & value added: Fintech development enables organizational innovation by mitigating information asymmetry and financing limitations while providing financial assistance and tax incentives in relation to products and services. The fintech growth has influenced the dynamic intermediary function of financial institutions in terms of sustainability and economic development. Fintech and natural resources negatively influence, while green innovations and financial development further, environmental sustainability.
Źródło:
Oeconomia Copernicana; 2023, 14, 3; 707-730
2083-1277
Pojawia się w:
Oeconomia Copernicana
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Big data management algorithms in artificial Internet of Things-based fintech
Autorzy:
Andronie, Mihai
Iatagan, Mariana
Uță, Cristian
Hurloiu, Iulian
Dijmărescu, Adrian
Dijmărescu, Irina
Powiązania:
https://bibliotekanauki.pl/articles/19902795.pdf
Data publikacji:
2023
Wydawca:
Instytut Badań Gospodarczych
Tematy:
big data management algorithms
artificial intelligence
Internet of Things
fintech
banking
capital markets
Opis:
Research background: Fintech companies should optimize banking sector performance in assisting enterprise financing as a result of firm digitalization. Artificial IoT-based fintech-based digital transformation can relevantly reverse credit resource misdistribution brought about by corrupt relationship chains. Purpose of the article: We aim to show that fintech can decrease transaction expenses and consolidates firm stock liquidity, enabling excess leverage decrease and cutting down information asymmetry and transaction expenses across capital markets. AI- and IoT-based fintechs enable immersive and collaborative financial transactions, purchases, and investments in relation to payment tokens and metaverse wallets, managing financial data, infrastructure, and value exchange across shared interactive virtual 3D and simulated digital environments. Methods: AMSTAR is a comprehensive critical measurement tool harnessed in systematic review methodological quality evaluation, DistillerSR is harnessed in producing accurate and transparent evidence-based research through literature review stage automation, MMAT appraises and describes study checklist across systematic mixed studies reviews in terms of content validity and methodological quality predictors, Rayyan is a responsive and intuitive knowledge synthesis tool and cloud-based architecture for article inclusion and exclusion suggestions, and ROBIS appraises systematic review bias risk in relation to relevance and concerns. As a reporting quality assessment tool, the PRISMA checklist and flow diagram, generated by a Shiny App, was used. As bibliometric visualization and construction tools for large datasets and networks, Dimensions and VOSviewer were leveraged. Search terms were “fintech” + “artificial intelligence”, “big data management algorithms”, and “Internet of Things”, search period was June 2023, published research inspected was 2023, and selected sources were 35 out of 188. Findings & value added: The growing volume of financial products and optimized operational performance of financial industries generated by fintech can provide firms with multifarious financing options quickly. Big data-driven fintech innovations are pivotal in banking and capital markets in relation to financial institution operational efficiency. Through data-driven technological and process innovation capabilities, AI system-based businesses can further automated services.
Źródło:
Oeconomia Copernicana; 2023, 14, 3; 769-793
2083-1277
Pojawia się w:
Oeconomia Copernicana
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of daily operations in the marine industry using ant colony optimization (ACO)-An artificial intelligence (AI) approach
Autorzy:
Sardar, A.
Anantharaman, M.
Garaniya, V.
Khan, F.
Powiązania:
https://bibliotekanauki.pl/articles/24201433.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
ant colony optimization
artificial intelligence
maritime transport
International Maritime Organization
international safety management
formal safety assessment
algorithms
Opis:
The maritime industry plays a crucial role in the global economy, with roughly 90% of world trade being conducted through the use of merchant ships and more than a million seafarers. Despite recent efforts to improve reliability and ship structure, the heavy dependence on human performance has led to a high number of casualties in the industry. Decision errors are the primary cause of maritime accidents, with factors such as lack of situational awareness and attention deficit contributing to these errors. To address this issue, the study proposes an Ant Colony Optimization (ACO) based algorithm to design and validate a verified set of instructions for performing each daily operational task in a standardised manner. This AI-based approach can optimise the path for complex tasks, provide clear and sequential instructions, improve efficiency, and reduce the likelihood of human error by minimising personal preference and false assumptions. The proposed solution can be transformed into a globally accessible, standardised instructions manual, which can significantly contribute to minimising human error during daily operational tasks on ships.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2023, 17, 2; 290--295
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial intelligence-based decision-making algorithms, Internet of Things sensing networks, and sustainable cyber-physical management systems in big data-driven cognitive manufacturing
Autorzy:
Lazaroiu, George
Androniceanu, Armenia
Grecu, Iulia
Grecu, Gheorghe
Neguriță, Octav
Powiązania:
https://bibliotekanauki.pl/articles/19322650.pdf
Data publikacji:
2022
Wydawca:
Instytut Badań Gospodarczych
Tematy:
cognitive manufacturing
Artificial Intelligence of Things
cyber-physical system
big data-driven deep learning
real-time scheduling algorithm
smart device
sustainable product lifecycle management
Opis:
Research background: With increasing evidence of cognitive technologies progressively integrating themselves at all levels of the manufacturing enterprises, there is an instrumental need for comprehending how cognitive manufacturing systems can provide increased value and precision in complex operational processes. Purpose of the article: In this research, prior findings were cumulated proving that cognitive manufacturing integrates artificial intelligence-based decision-making algorithms, real-time big data analytics, sustainable industrial value creation, and digitized mass production. Methods: Throughout April and June 2022, by employing Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, a quantitative literature review of ProQuest, Scopus, and the Web of Science databases was performed, with search terms including "cognitive Industrial Internet of Things", "cognitive automation", "cognitive manufacturing systems", "cognitively-enhanced machine", "cognitive technology-driven automation", "cognitive computing technologies", and "cognitive technologies". The Systematic Review Data Repository (SRDR) was leveraged, a software program for the collecting, processing, and analysis of data for our research. The quality of the selected scholarly sources was evaluated by harnessing the Mixed Method Appraisal Tool (MMAT). AMSTAR (Assessing the Methodological Quality of Systematic Reviews) deployed artificial intelligence and intelligent workflows, and Dedoose was used for mixed methods research. VOSviewer layout algorithms and Dimensions bibliometric mapping served as data visualization tools. Findings & value added: Cognitive manufacturing systems is developed on sustainable product lifecycle management, Internet of Things-based real-time production logistics, and deep learning-assisted smart process planning, optimizing value creation capabilities and artificial intelligence-based decision-making algorithms. Subsequent interest should be oriented to how predictive maintenance can assist in cognitive manufacturing by use of artificial intelligence-based decision-making algorithms, real-time big data analytics, sustainable industrial value creation, and digitized mass production.
Źródło:
Oeconomia Copernicana; 2022, 13, 4; 1047-1080
2083-1277
Pojawia się w:
Oeconomia Copernicana
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stakeholder-accountability model for artificial intelligence projects
Autorzy:
Miller, Glorja J.
Powiązania:
https://bibliotekanauki.pl/articles/2163225.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
accountability
artificial intelligence
algorithms
project management
ethics
Opis:
Aim/purpose – This research presents a conceptual stakeholder accountability model for mapping the project actors to the conduct for which they should be held accountable in artificial intelligence (AI) projects. AI projects differ from other projects in important ways, including in their capacity to inflict harm and impact human and civil rights on a global scale. The in-project decisions are high stakes, and it is critical who decides the system’s features. Even well-designed AI systems can be deployed in ways that harm individuals, local communities, and society. Design/methodology/approach – The present study uses a systematic literature review, accountability theory, and AI success factors to elaborate on the relationships between AI project actors and stakeholders. The literature review follows the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement process. Bovens’ accountability model and AI success factors are employed as a basis for the coding framework in the thematic analysis. The study uses a web-based survey to collect data from respondents in the United States and Germany employing statistical analysis to assess public opinion on AI fairness, sustainability, and accountability. Findings – The AI stakeholder accountability model specifies the complex relationships between 16 actors and 22 stakeholder forums using 78 AI success factors to define the conduct and the obligations and consequences that characterize those relationships. The survey analysis suggests that more than 80% of the public thinks AI development should be fair and sustainable, and it sees the government and development organizations as most accountable in this regard. There are some differences between the United States and Germany regarding fairness, sustainability, and accountability. Research implications/limitations – The results should benefit project managers and project sponsors in stakeholder identification and resource assignment. The definitions offer policy advisors insights for updating AI governance practices. The model presented here is conceptual and has not been validated using real-world projects. Originality/value/contribution – The study adds context-specific information on AI to the project management literature. It defines project actors as moral agents and provides a model for mapping the accountability of project actors to stakeholder expectations and system impacts.
Źródło:
Journal of Economics and Management; 2022, 44; 446-494
1732-1948
Pojawia się w:
Journal of Economics and Management
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algorithmic Human Resources Management – Perspectives and Challenges
Autorzy:
Sienkiewicz, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/2166151.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
human resources management
HR analytics
algorithms
HRM ethics
Opis:
Theoretical background: Technology – most notably processes of digitalisation, the use of artificial in telligence, machine learning, big data and prevalence of remote work due to pandemic – changes the way organizations manage human resources. One of the increasing trends is the use of so-called “algorithmic management”. It is notably different than previous e-HRM or HRIS (human resources information systems) applications, as it automates HR-related duties. Algorithms, being autonomous computational formulae, are considered objective and mathematically correct decision-making mechanisms. Limiting human in volvement and oversight of the labour process might lead to serious ethical and managerial challenges. Many areas – previously being sole responsibility of managers (including HR managers), like employment relations, hiring, performance management, remuneration – are increasingly affected, or even taken over, by algorithmic management.Purpose of the article: The purpose of this article is to review the development, perspectives and challenges (including possible biases and ethical considerations) of algorithmic human resources management. This novel approach is fuelled by the speeding processes of digitalisation, the use of artificial intelligence, big data and increased analytical capabilities and applications used by contemporary companies. Algorithms are formulas that autonomously make decisions based on statistical models or decision rules without human intervention. Therefore, the use of algorithmic HRM automates decision-making processes and duties of human resources managers, thereby limiting human involvement and oversight, which can have negative consequences for the organization.Research methods: The article provides a critical literature review of theoretical sources and empirical evidence on the application of algorithmic human resources management practices. Scientific journals in the field of human resources management and technology applications have been reviewed, as well as research reports from academic institutions and renowned international organizations.Main findings: Applications of algorithmic human resources management are an emerging field of study that is currently not extensively researched. Little is known about the scale of use as well as consequences of this more automated approach to manage human work. Scarce evidence suggests possible negative con sequences, including ethical concerns, biases leading to discriminatory decisions and adverse employees’ reactions to decisions based on algorithms. After the review of possible future developments and challenges connected to algorithmic HRM, this article proposed actions aimed at re-humanisation of the approach to managerial decision-making with the support of algorithms, ensuring transparency of the algorithms construction and functionalities, and increasing reliability and reduction of possible biases.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio H – Oeconomia; 2021, 55, 2; 95-105
0459-9586
2449-8513
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio H – Oeconomia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Działania lubuskiej Policji w zwalczaniu pandemii ptasiej grypy o podtypie H5N8 na terenie województwa lubuskiego w latach 2016-2017
Actions of the Lubuskiej Police in the combating the bird flu pandemic subf. H5N8 in the province of Lubusz in 2016-2017
Autorzy:
Maciejewski, Dariusz
Powiązania:
https://bibliotekanauki.pl/articles/955664.pdf
Data publikacji:
2020
Wydawca:
Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim
Tematy:
bezpieczeństwo wewnętrzne
epizootie
plany zarządzania kryzysowego
algorytmy postępowania Policji w sytuacji kryzysowej
Internal security
Epizootic
Crisis management plans
Algorithms for the conduct of police in crisis situations
Opis:
The subject was developed to approximate the task and the role of the police during the crisis situation, which was a pandemic of a highly pathogenic avian influenza virus of the type h5n8. The competence of this state service based on the law will be analyzed. The analysis was based on events that took place in the Lubusz region in 2016/2017.
Źródło:
Studia Administracji i Bezpieczeństwa; 2019, 7; 43-52
2543-6961
Pojawia się w:
Studia Administracji i Bezpieczeństwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Software for Information and Technical System of Operational Monitoring of Agrobiological State of Agricultural Land of Oleksandr Brovarets Construction
Autorzy:
Brovarets, O.
Powiązania:
https://bibliotekanauki.pl/articles/972983.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
information and technical system
local operational monitoring
soil
samples
variability
size
research
functional structure
software
program code
management algorithms
Opis:
Modern agriculture involves the implementation of a particular technological operation, according to the appropriate map-task, which is developed pre-based on diverse information. Knowledge of a certain structure of soil cover variability, obtained using information and technical systems of local operational monitoring of the agrobiological state of agricultural lands, allows us to adopt effective operational decisions for efficient management of agrobiological potential of agricultural lands. Obviously, under such conditions, there is a need for fundamentally new approaches to agricultural production, which is to ensure the proper quality of technological operations. The quality of the implementation of technological operations is an integral indicator of the efficiency of production of agricultural products within the agrobiological field. The necessary quality of implementation of the basic technological processes in plant growing is provided by the integrated information and technical systems of operational monitoring of the agrobiological state of agricultural lands. In connection with this, the task is to use a fundamentally new class of information and technical systems of local operational monitoring of the agrobiological state of agricultural lands. The task is achieved by using the information and technical system of operational monitoring of the soil environment of the structure to determine the conductive characteristics of the soil environment. The purpose of this research is to develop and substantiate the functional structure, software, writing code and algorithms for managing the executive bodies of the information and technical system of operational monitoring of the agrobiological state of the soil environment of agricultural lands.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2019, 8, 4; 28-41
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algorytmy kolejkowania : algorytm RED (Random Early Detection)
Queueing algorithms : algorithm RED (Random Early Detection)
Autorzy:
Iljaszewicz, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/131935.pdf
Data publikacji:
2018
Wydawca:
Wrocławska Wyższa Szkoła Informatyki Stosowanej Horyzont
Tematy:
aktywne zarządzanie kolejkami
AQM
metody kolejkowania
algorytm RED
przepustowość sieci
active queue management
queuing methods
RED algorithm
network bandwidth
Opis:
Artykuł omawia algorytm Losowego Wczesnego Wykrywania RED (ang. Random Early Detection) pozwalający bramce unikania przeciążeń w sieciach z komutacją pakietów. Brama wykrywa początkowe przeciążenie, obliczając średni rozmiar kolejki. Brama może powiadamiać o przeciążonych połączeniach lub o upuszczeniu pakietów przybywających do bramy, ustawiając bit w nagłówkach pakietów. Kiedy rozmiar średniej kolejki przekracza ustawiony próg, brama opada lub zaznacza każdy przybywający pakiet z pewnym prawdopodobieństwem, gdzie dokładny rozkład prawdopodobieństwa jest funkcją średniego rozmiaru kolejki. Bramki RED utrzymują średnią wielkość kolejki na niskim poziomie, jednocześnie zezwalając na sporadyczne impulsy pakietów w kolejce. Podczas przeciążenia prawdopodobieństwo, że brama powiadamia o konkretnym połączeniu, by zmniejszyć jego okno, jest mniej więcej proporcjonalne do udziału tego w przepustowości przez bramę. Bramki RED są zaprojektowane tak, aby dostarczyć protokół taki jak TCP, przeciążając warstwę transportową. Symulacje sieci TCP / IP są używane do zilustrowania wydajności bramki.
The subject of the study is to present the Random Early Detection (RED) algorithm that allows the gateway to avoid overloading in packet switched networks. The gateway detects the initial overload by calculating the average size of the queue. The gateway can notify about overload connections or by dropping packets arriving at the gate by setting a bit in the packet headers. When the size of the average queue exceeds the set threshold, the gate descends or marks each arriving packet with a certain probability, where the exact probability distribution is a function of the average queue size. RED gates maintain the average queue size at a low level, while allowing occasional packet bursts in the queue. During overload, probability that the gateway informs about a specific connection to reduce its window is more or less proportional to this connection involved in bandwidth through the gate. The RED gateways are designed to provide a protocol such as TCP to overload the transport layer. TCP / IP network simulations are used to illustrate the performance of the gateway.
Źródło:
Biuletyn Naukowy Wrocławskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka; 2018, 8, 1; 4-8
2082-9892
Pojawia się w:
Biuletyn Naukowy Wrocławskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An efficient approach for view selection for data warehouse using tree mining and evolutionary computation
Autorzy:
Thakare, A.
Deshpande, P.
Powiązania:
https://bibliotekanauki.pl/articles/305413.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
database management systems
data warehousing and data mining
query optimization
graph mining
algorithms for parallel computing
evolutionary computations
genetic algorithms
Opis:
The selection of a proper set of views to materialize plays an important role in database performance. There are many methods of view selection that use different techniques and frameworks to select an efficient set of views for materialization. In this paper, we present a new efficient scalable method for view selection under the given storage constraints using a tree mining approach and evolutionary optimization. The tree mining algorithm is designed to determine the exact frequency of (sub)queries in the historical SQL dataset. The Query Cost model achieves the objective of maximizing the performance benefits from the final view set that is derived from the frequent view set given by the tree mining algorithm. The performance benefit of a query is defined as a function of query frequency, query creation cost, and query maintenance cost. The experimental results show that the proposed method is successful in recommending a solution that is fairly close to an optimal solution.
Źródło:
Computer Science; 2018, 19 (4); 431-455
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie profili energetycznych do doboru elementów i algorytmów sterowania w hybrydowych układach zasilających
Use of Energy Profiles to Choose Elements and Control Algorithms in Hybrid Power Sources
Autorzy:
Adamczyk, A.
Grzeczka, G.
Powiązania:
https://bibliotekanauki.pl/articles/947646.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Morski w Gdyni. Wydawnictwo Uniwersytetu Morskiego w Gdyni
Tematy:
ogniwo paliwowe
superkondensator
bateria
zarządzanie mocą
profil energetyczny
fuel cell
supercapacitor
battery
power management
energy profile
Opis:
Dostępność nowych skomercjalizowanych technologii w dziedzinie zasilania elektrycznego pozwala na nowe rozwiązania inżynierskie. W celu efektywnego wykorzystania potencjału dostępnych rozwiązań coraz częściej stosowane są techniki hybrydowe. Artykuł zawiera opis koncepcji projektowej przenośnych hybrydowych systemów zasilania. Wykorzystano profile energetyczne, które są autorskim narzędziem do określenia parametrów projektowanego układu. Zaproponowane rozwiązanie zapewnia wykorzystanie korzystnych parametrów nowoczesnych źródeł zasilania, co pozwala na znaczące zmniejszenie masy projektowanego układu.
Modern technologies available in commercialized market of power supply, allow engineers to introduce new solutions. In order to fully use the potential of available technologies, hybrid solutions are increasingly employed. This paper presents designing concept for mobile hybrid power supply systems. Proposed solution ensures proper use of favourable parameters of designed system, allowing for significant reduction of the designed system mass.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Gdyni; 2018, 103; 99-106
1644-1818
2451-2486
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Gdyni
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zarządzanie inteligentnym transportem wewnętrznym poprzez komputerowe algorytmy probabilistyczne
Management of intelligent internal transport through computer-based probabilistic algorithms
Autorzy:
Topolski, M.
Powiązania:
https://bibliotekanauki.pl/articles/314930.pdf
Data publikacji:
2018
Wydawca:
Instytut Naukowo-Wydawniczy "SPATIUM"
Tematy:
transport wewnątrzzakładowy
zarządzanie transportem
inteligentny transport
telematyka transportu
model probabilistyczny
internal transport
transport management
intelligent transport
transport telematics
probabilistic model
Opis:
Artykuł przedstawia model probabilistyczny w zadaniu zarządzania inteligentnym transportem wewnętrznym bazującym na ryzyku związanym z podejmowaniem decyzji. Poprzez termin niezawodności systemu transportu wewnętrznego rozumie się czas bezawaryjnego działania transportu wewnętrznego w stosunku do całości czasu, w którym dany transport powinien działać poprawnie. Artykuł przedstawia model oceny ryzyka działania transportu wewnętrznego na bazie prawdopodobieństwa z jakim system będzie bezawaryjnie funkcjonował w zadanym okresie czasu, przy pracy w określonym środowisku i dla określonego celu. Budowanie modeli probabilistycznych służących do wyznaczania ryzyka planowania produkcji opiera się na rzetelnej analizie wszystkich możliwych aspektów produkcji danego dobra gospodarczego. W modelowaniu poddaje się ocenie mocne i słabe strony przedsiębiorstwa, które chce podjąć się zadania transportowego, dokonuje się planowania samego procesu transportowego w oparciu o najważniejsze cele wynikające z procesu transportowego.
This article presents a proposal proprietary approach to the task of optimizing transport processes. In modern logistics, there is a very high complexity of the transport processes. The development of technology has made the systems are becoming more complex. This generates high costs and quite often only approximate the best solutions. The model shows the connection classifier Ford-Fulkerson network flow algorithm Demstera-Shafer theory based on mathematical records. This method is used to obtain the limit problems (tasks) transport. This method is based inter alia on the cost matrix, which means that usually obtained cost solution to the problem is significantly lower than using other methods. The solution acceptable - it is a temporary solution. There are many feasible solutions to a transportation problem, wherein each further has a better (lower) or at least a minimal cost from the previous.
Źródło:
Autobusy : technika, eksploatacja, systemy transportowe; 2018, 19, 6; 968-972, CD
1509-5878
2450-7725
Pojawia się w:
Autobusy : technika, eksploatacja, systemy transportowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algorytmy wspomagające proces zarządzania drogowymi obiektami inżynierskimi
Algorithms supporting the management process of road engineering objects
Autorzy:
Janas, L.
Kaszyński, A.
Miller, B.
Powiązania:
https://bibliotekanauki.pl/articles/143952.pdf
Data publikacji:
2017
Wydawca:
Stowarzyszenie Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej
Tematy:
obiekty mostowe
zarządzanie
remonty
sieci neuronowe
bridges
management system
repairs
neural networks
Opis:
W wielu krajach proces zarządzania obiektami mostowymi jest wspomagany zaawansowanymi algorytmami obliczeniowymi. W niniejszym artykule omówiono algorytmy wspomagające ustalanie kolejności remontów obiektów mostowych, opracowane dla Generalnej Dyrekcji Dróg Krajowych i Autostrad. Algorytmy te są oparte na bazie danych ewidencyjnych, bazie ocen uszkodzeń oraz bazie ocen przydatności do użytkowania. Jeden z algorytmów, wykorzystujący sieci neuronowe, jest stosowany w GDDKiA do wspomagania tworzenia listy rankingowej obiektów inżynierskich (w tym mostowych), które wymagają remontów w pierwszej kolejności.
The number of bridges on the Polish national roads and motorways exceeds 4 thousand. The objective assessment which objects should be repaired at first creates many difficulties. The administrator of national roads General Directorate for National Roads and Motorways (GDDKiA) sought the tool which, based on existing databases, will form the list with order of repairs of bridges. In the article there are discussed parameters which should be taken into consideration at the settlement of the order of repair. A novel approach is presented herein, namely the computational algorithm based on neural networks, enabling the creation of stand-ings and the settlement of the optimum-order of repair. This algorithm is currently used in GDDKiA.
Źródło:
Drogownictwo; 2017, 9; 285-289
0012-6357
Pojawia się w:
Drogownictwo
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An overview of design, control, power management, system stability and reliability in electric ships
Autorzy:
Ni, K.
Hu, Y.
Li, X.
Powiązania:
https://bibliotekanauki.pl/articles/1193412.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
electric ship
control algorithms
power electronics techniques
power drive system
stability
Opis:
With the fast development of power electronics techniques, electrification of shipboard power systems (SPS) is an unstoppable trend, and the concepts of electric ships (ESs) and all-electric ships (AESs) emerge. In order to meet the constantly increasing electricity demand in SPS, the medium voltage direct current (MVDC) SPS becomes a promising shipboard electrical network architecture. This paper aims to present a comprehensive review of the design, control, power management, system stability and reliability in ESs. The most recent technologies and academic achievements in these fields are discussed. In the near future, it is possible that the electric propulsion technology will be widely applied to various types of ships.
Źródło:
Power Electronics and Drives; 2017, 2, 37/2; 5-29
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies