Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "machined aluminum die castings" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Surface casting defects inspection using vision system and neural network techniques
Autorzy:
Świłło, S. J.
Perzyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/380699.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
nondestructive testing
machined aluminum die castings
image processing algorithms
vision system inspection
neural network
badanie nieniszczące
odlewnictwo ciśnieniowe
algorytm przetwarzania obrazu
inspekcja wizyjna
sieć neuronowa
Opis:
The paper presents a vision based approach and neural network techniques in surface defects inspection and categorization. Depending on part design and processing techniques, castings may develop surface discontinuities such as cracks and pores that greatly influence the material’s properties Since the human visual inspection for the surface is slow and expensive, a computer vision system is an alternative solution for the online inspection. The authors present the developed vision system uses an advanced image processing algorithm based on modified Laplacian of Gaussian edge detection method and advanced lighting system. The defect inspection algorithm consists of several parameters that allow the user to specify the sensitivity level at which he can accept the defects in the casting. In addition to the developed image processing algorithm and vision system apparatus, an advanced learning process has been developed, based on neural network techniques. Finally, as an example three groups of defects were investigated demonstrates automatic selection and categorization of the measured defects, such as blowholes, shrinkage porosity and shrinkage cavity.
Źródło:
Archives of Foundry Engineering; 2013, 13, 4; 103-106
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatic inspection of surface defects in die castings after machining
Autorzy:
Świłło, S. J.
Perzyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/380799.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
nondestructive testing
casting defect
machined aluminum
die casting
image processing algorithm
vision system inspection
badania nieniszczące
wada odlewu
odlewanie ciśnieniowe
algorytm przetwarzania obrazu
inspekcja wizyjna
Opis:
A new camera based machine vision system for the automatic inspection of surface defects in aluminum die casting was developed by the authors. The problem of surface defects in aluminum die casting is widespread throughout the foundry industry and their detection is o f paramount importance in maintaining product quality. The casting surfaces are the most highly loaded regions of materials and components. Mechanical and thermal loads as well as corrosion or irradiation attacks are directed primarily at the surface of the castings. Depending on part design and processing techniques, castings may develop surface discontinuities such as cracks or tears, inclusions due to chemical reactions or foreign material in the molten metal, and pores that greatly influence the material ability to withs tand these loads. Surface defects may act as a stress concentrator initiating a fracture point. If a pressure is applied in this area, the casting can fracture. The human visual system is well adapted to perform in areas of variety and change; the visual inspection processes, on the other hand, require observing the same type of image repeatedly to detect anomalies. Slow, expensive, erratic inspection usually is the result. Computer based visual inspection provides a viable alternative to human inspectors. Developed by authors machine vision system uses an image processing algorithm based on modified Laplacian of Gaussian edge detection method to detect defects with different sizes and shapes. The defect inspection algorithm consists of three parameters. One is a parameter of defects sensitivity, the second parameter is a thres hold level and the third parameter is to identify the detected defects size and shape. The machine vision system has been successfully tested for the different types of defects on the surface of castings.
Źródło:
Archives of Foundry Engineering; 2011, 11, 3 spec.; 231-236
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies