Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "logic" wg kryterium: Wszystkie pola


Tytuł:
Equality Logic
Autorzy:
Ghorbani, Shokoofeh
Powiązania:
https://bibliotekanauki.pl/articles/1023179.pdf
Data publikacji:
2020-11-04
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
many-valued logic
equality logic
completness
prelinear equality∆-algebra
prelinear equality∆ logic
Opis:
In this paper, we introduce and study a corresponding logic to equality-algebras and obtain some basic properties of this logic. We prove the soundness and completeness of this logic based on equality-algebras and local deduction theorem. We show that this logic is regularly algebraizable with respect to the variety of equality∆-algebras but it is not Fregean. Then we introduce the concept of (prelinear) equality∆-algebras and investigate some related properties. Also, we study ∆-deductive systems of equality∆-algebras. In particular, we prove that every prelinear equality ∆-algebra is a subdirect product of linearly ordered equality∆-algebras. Finally, we construct prelinear equality ∆ logic and prove the soundness and strong completeness of this logic respect to prelinear equality∆-algebras.
Źródło:
Bulletin of the Section of Logic; 2020, 49, 3; 291-324
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monadic Fragments of Intuitionistic Control Logic
Autorzy:
Glenszczyk, Anna
Powiązania:
https://bibliotekanauki.pl/articles/749902.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Intuitionistic Control Logic
Intuitionistic Logic
Combining Logic
Control Operators
Opis:
We investigate monadic fragments of Intuitionistic Control Logic (ICL), which is obtained from Intuitionistic Propositional Logic (IPL) by extending language of IPL by a constant distinct from intuitionistic constants. In particular we present the complete description of purely negational fragment and show that most of monadic fragments are finite.
Źródło:
Bulletin of the Section of Logic; 2016, 45, 3/4
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Leibniz congruences
Autorzy:
Font, Josep
Powiązania:
https://bibliotekanauki.pl/articles/1361077.pdf
Data publikacji:
1993
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
deductive system
protoalgebraic logic
Gentzen calculus
closure operator
abstract logic
algebraizable logic
Leibniz congruence
selfextensional logic
logical matrices
algebraic logic
Opis:
The aim of this paper is to discuss the motivation for a new general algebraic semantics for deductive systems, to introduce it, and to present an outline of its main features. Some tools from the theory of abstract logics are also introduced, and two classifications of deductive systems are analysed: one is based on the behaviour of the Leibniz congruence (the maximum congruence of a logical matrix) and the other on the behaviour of the Frege operator (which associates to every theory the interderivability relation modulo the theory). For protoalgebraic deductive systems the class of algebras associated in general turns out to be the class of algebra reducts of reduced matrices, which is the algebraic counterpart usually considered for this large class of deductive systems; but in the general case the new class of algebras shows a better behaviour.
Źródło:
Banach Center Publications; 1993, 28, 1; 17-36
0137-6934
Pojawia się w:
Banach Center Publications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Polyadic algebras over nonclassical logics
Autorzy:
Pigozzi, Don
Salibra, Antonino
Powiązania:
https://bibliotekanauki.pl/articles/1361079.pdf
Data publikacji:
1993
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
lambda calculus
modal logic
intuitionistic logic
many-valued logic
BCK logic
Opis:
The polyadic algebras that arise from the algebraization of the first-order extensions of a SIC are characterized and a representation theorem is proved. Standard implicational calculi (SIC)'s were considered by H. Rasiowa [19] and include classical and intuitionistic logic and their various weakenings and fragments, the many-valued logics of Post and Łukasiewicz, modal logics that admit the rule of necessitation, BCK logic, etc.
Źródło:
Banach Center Publications; 1993, 28, 1; 51-66
0137-6934
Pojawia się w:
Banach Center Publications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Useful Four-Valued Extension of the Temporal Logic KtT4
Autorzy:
Degauquier, Vincent
Powiązania:
https://bibliotekanauki.pl/articles/749896.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
temporal logic
many-valued logic
bi-intuitionistic logic
paraconsistent logic
sequent calculus
duality
cut-redundancy
Opis:
The temporal logic KtT4 is the modal logic obtained from the minimal temporal logic Kt by requiring the accessibility relation to be reflexive (which corresponds to the axiom T) and transitive (which corresponds to the axiom 4). This article aims, firstly, at providing both a model-theoretic and a proof-theoretic characterisation of a four-valued extension of the temporal logic KtT4 and, secondly, at identifying some of the most useful properties of this extension in the context of partial and paraconsistent logics.
Źródło:
Bulletin of the Section of Logic; 2018, 47, 1
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensions
Autorzy:
Cornejo, Juan Manuel
Sankappanavar, Hanamantagouda P.
Powiązania:
https://bibliotekanauki.pl/articles/43189647.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
semi-intuitionistic logic
dually hemimorphic semi-Heyting logic
dually quasi-De Morgan semi-Heyting logic
De Morgan semi-Heyting logic
dually pseudocomplemented semi-Heyting logic
regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1
implicative logic
equivalent algebraic semantics
algebraizable logic
De Morgan Gödel logic
dually pseudocomplemented Gödel logic
Moisil's logic
3-valued Łukasiewicz logic
Opis:
The variety \(\mathbb{DHMSH}\) of dually hemimorphic semi-Heyting algebras was introduced in 2011 by the second author as an expansion of semi-Heyting algebras by a dual hemimorphism. In this paper, we focus on the variety \(\mathbb{DHMSH}\) from a logical point of view. The paper presents an extensive investigation of the logic corresponding to the variety of dually hemimorphic semi-Heyting algebras and of its axiomatic extensions, along with an equally extensive universal algebraic study of their corresponding algebraic semantics. Firstly, we present a Hilbert-style axiomatization of a new logic called "Dually hemimorphic semi-Heyting logic" (\(\mathcal{DHMSH}\), for short), as an expansion of semi-intuitionistic logic \(\mathcal{SI}\) (also called \(\mathcal{SH}\)) introduced by the first author by adding a weak negation (to be interpreted as a dual hemimorphism). We then prove that it is implicative in the sense of Rasiowa and that it is complete with respect to the variety \(\mathbb{DHMSH}\). It is deduced that the logic \(\mathcal{DHMSH}\) is algebraizable in the sense of Blok and Pigozzi, with the variety \(\mathbb{DHMSH}\) as its equivalent algebraic semantics and that the lattice of axiomatic extensions of \(\mathcal{DHMSH}\) is dually isomorphic to the lattice of subvarieties of \(\mathbb{DHMSH}\). A new axiomatization for Moisil's logic is also obtained. Secondly, we characterize the axiomatic extensions of \(\mathcal{DHMSH}\) in which the "Deduction Theorem" holds. Thirdly, we present several new logics, extending the logic \(\mathcal{DHMSH}\), corresponding to several important subvarieties of the variety \(\mathbb{DHMSH}\). These include logics corresponding to the varieties generated by two-element, three-element and some four-element dually quasi-De Morgan semi-Heyting algebras, as well as a new axiomatization for the 3-valued Łukasiewicz logic. Surprisingly, many of these logics turn out to be connexive logics, only a few of which are presented in this paper. Fourthly, we present axiomatizations for two infinite sequences of logics namely, De Morgan Gödel logics and dually pseudocomplemented Gödel logics. Fifthly, axiomatizations are also provided for logics corresponding to many subvarieties of regular dually quasi-De Morgan Stone semi-Heyting algebras, of regular De Morgan semi-Heyting algebras of level 1, and of JI-distributive semi-Heyting algebras of level 1. We conclude the paper with some open problems. Most of the logics considered in this paper are discriminator logics in the sense that they correspond to discriminator varieties. Some of them, just like the classical logic, are even primal in the sense that their corresponding varieties are generated by primal algebras.
Źródło:
Bulletin of the Section of Logic; 2022, 51, 4; 555-645
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Paracomplete Versions of Jaśkowskis Discussive Logic
Autorzy:
Mruczek-Nasieniewska, Krystyna
Petrukhin, Yaroslav
Shangin, Vasily
Powiązania:
https://bibliotekanauki.pl/articles/43183714.pdf
Data publikacji:
2024
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
discussive logic
discursive logic
modal logic
paracomplete logic
paraconsistent logic
Opis:
Jaśkowski's discussive (discursive) logic \( \mathbf{D_2} \) is historically one of the first paraconsistent logics, i.e., logics which 'tolerate' contradictions. Following Jaśkowski's idea to define his discussive logic by means of the modal logic \( \mathbf{ S5 } \) via special translation functions between discussive and modal languages, and supporting at the same time the tradition of paracomplete logics being the counterpart of paraconsistent ones, we present a paracomplete discussive logic \( \mathbf{ D_2^p } \).
Źródło:
Bulletin of the Section of Logic; 2024, 53, 1; 29-61
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Undecidability of Non-monotonic Logic
Autorzy:
Suchenek, M. A.
Powiązania:
https://bibliotekanauki.pl/articles/92958.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
default logic
autoepistemic logic
asymptotic decidability
Opis:
The degree of undecidability of nonmonotonic logic is investigated. A proof is provided that arithmetical but not recursively enumerable sets of sentences definable by nonmonotonic default logic are elements of ∆n+1 but not Σ n nor Π n for some n ≥1 in Kleene- Mostowski hierarchy of arithmetical sets.
Źródło:
Studia Informatica : systems and information technology; 2006, 1(7); 127-132
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
From quantum logic to quantum computational logic
Autorzy:
Caponigro, M.
Mancini, S.
Powiązania:
https://bibliotekanauki.pl/articles/1955359.pdf
Data publikacji:
2006
Wydawca:
Politechnika Gdańska
Tematy:
quantum logic
quantum computation
Opis:
We overview the main concepts of quantum logic ranging from the orthodox formulation to the quantum computational aspects.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2006, 10, 1; 5-19
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
From Intuitionism to Brouwers Modal Logic
Autorzy:
Kostrzycka, Zofia
Powiązania:
https://bibliotekanauki.pl/articles/1023286.pdf
Data publikacji:
2020-12-30
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
intuitionistic logic
Kripke frames
Brouwer's modal logic
Opis:
We try to translate the intuitionistic propositional logic INT into Brouwer's modal logic KTB. Our translation is motivated by intuitions behind Brouwer's axiom p →☐◊p The main idea is to interpret intuitionistic implication as modal strict implication, whereas variables and other positive sentences remain as they are. The proposed translation preserves fragments of the Rieger-Nishimura lattice which is the Lindenbaum algebra of monadic formulas in INT. Unfortunately, INT is not embedded by this mapping into KTB.
Źródło:
Bulletin of the Section of Logic; 2020, 49, 4; 343-358
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies