Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikacja obrazu" wg kryterium: Wszystkie pola


Tytuł:
Wstępna ocena możliwości wykorzystania obrazów satelitarnych aster w monitorowaniu lodowców Svalbardu
Preliminary assessment of aster images applicability in monitoring the Svalbard glaciers
Autorzy:
Błaszczyk, M.
Drzewiecki, W.
Powiązania:
https://bibliotekanauki.pl/articles/129719.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
ASTER
lodowiec
klasyfikacja
eCognition
segmentacja obrazu
tekstura
glacier
classification
segmentation
texture
Opis:
Celem prezentowanej pracy była ocena możliwości wykorzystania obrazów satelitarnych ASTER do określenia stopnia uszczelinienia powierzchni lodowców Svalbardu. Pierwszy etap badań polegał na określeniu granic lodowców. Przetestowano metody stosowane w tym celu w ramach projektu GLIMS (Global Land Ice Measurement from Space) oraz zaproponowano własne podejście oparte o wykorzystanie obrazu nasycenia uzyskanego na drodze transformacji IHS kompozycji barwnej z kanałów 345. Dla oddzielenia lodowców od obszarów kry lodowej zaproponowano wykorzystanie wybranych miar teksturalnych. Próby wyodrębnienia w granicach wydzielonych wcześniej lodowców obszarów uszczelinionych na drodze klasyfikacji nadzorowanej nie dały zadowalających rezultatów. Ostatnia część przeprowadzonych badań miała na celu przygotowanie obrazu satelitarnego do klasyfikacji obiektowej w programie eCognition poprzez opracowanie uniwersalnych parametrów segmentacji. Uzyskanie satysfakcjonujących rezultatów segmentacji w oparciu o kanały spektralne obrazu ASTER wymagało stosowania dla poszczególnych lodowców różnych parametrów skali, kształtu i zwartości, co znacząco utrudniałoby automatyzację procesu klasyfikacji. Poprawę rezultatów osiągnięto przeprowadzając wstępną segmentację w oparciu o 1 kanał obrazu ASTER, a dokładniejszą w oparciu o obraz tekstury uzyskany w programie MaZda. Otrzymane rezultaty segmentacji pozwalają przypuszczać, iż możliwe będzie przeprowadzenie klasyfikacji obiektowej w programie eCognition, której rezultatem będzie wydzielenie jako osobnej klasy obszarów uszczelinionych.
ASTER images applicability to surface crevassing assessment of tidewater glacier in southern Spitsbergen, Svalbard was investigated. In the first phase of research, the glaciers spatial extent determination methods were investigated - spectral bands rationing and Normalized Difference Snow Index (NDSI). A new method based on saturation image obtained by intensity-hue-saturation transformation of 345 colour composite was tested as well. Image texture parameters were applied to separate ice floats from glaciers. The supervised classification of original spectral bands for crevassed areas identification failed. Better results were achieved using chosen texture images, but still too many other glacier areas (e.g. dark moraines or streams on glacier surface) were classified as crevasses. In the last stage of research, object-oriented image analysis software (eCognition) was used. The parameters for ASTER image segmentation, resulting in determination of crevassed glacier areas as separate image segments, were searched. To achieve such a goal, image segmentation performed using ASTER spectral bands required different scale, shape and compactness factors for individual glaciers. This is because glacier dynamics and morphology differ, causing differences in shapes and extent of crevassed areas. Satisfactory results were achieved after the application of a two-level segmentation procedure: ASTER spectral band 1 segmentation using large scale parameter and than MaZda software computed texture image segmentation with a small-scale factor. The research confirmed the applicability of satellite ASTER images for monitoring the Svalbard glaciers. The spatial extent of the glaciers was determined by simple thresholding of transformed spectral bands and texture images. Furthermore, obtained segmentation results should enable successful application of object oriented image classification in eCognition to mapping of crevassed glacier areas. Such a classification is planned as the next stage of the research.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2006, 16; 29-39
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie analizy wielkości i kształtu w klasyfikacji użytków zielonych na zdjęciach Landsat ETM+
The application of the size and shape analysis in meadow classification on Landsat ETM+ images
Autorzy:
Kosiński, K.
Hoffmann-Niedek, A.
Powiązania:
https://bibliotekanauki.pl/articles/131094.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
segmentacja obrazu
kształt
wielkość
klasyfikacja
użytkowanie łąk
image segmentation
shape
size
classification
grassland utilisation
Opis:
W naturalnym procesie widzenia z obrazu wydzielane są względnie jednorodne segmenty (Laliberte et al., 2004). Analizowane są takie cechy segmentów, jak kolor, tekstura, częstotliwość przestrzenna, położenie, wielkość, kształt, orientacja, ruch, efekt stereo (Zipser, Lamme, Shiller, 1996; Bach M., Meigen T., 1999; Jacob P., 2003). Znaczenie koloru w wizualnej interpretacji użytków zielonych na zdjęciach Landsat ETM+ można ocenić na podstawie analizy porównawczej składowych barwnych segmentów obrazu. Analiza barwna kompleksów krajobrazowo-roślinnych wydzielonych na mapie satelitarnej doliny Luciąży pozwala wyróżnić cztery kategorie użytków zielonych (Kosiński, 2005). Celem pracy jest określenie znaczenia wielkości i kształtu kompleksów w interpretacji użytków zielonych. Praca jest kontynuacją badań w dolinie Luciąży na Równinie Piotrkowskiej. Kompleksy krajobrazowo-roślinne (jednostki geobotaniczne w randze przestrzennej uroczyska) wydzielano na kompozycji dwóch zdjęć Landsat ETM+. Do delimitacji kompleksów zastosowano interaktywne grupowanie pikseli metodą Region Growing. Analiza wielkości i kształtu wydzielonych w ten sposób segmentów obrazu pozwala odróżnić łąki użytkowane na siedliskach świeżych od pozostałych użytków zielonych, roślinności darniowej i muraw. Wg dobranych empirycznie kryteriów jedenaście spośród trzynastu badanych kompleksów tego typu było prawidłowo sklasyfikowanych. Spośród pozostałych 39 kompleksów użytków zielonych 37 zostało zakwalifikowanych prawidłowo. Połączenie wyników klasyfikacji wg składowych barwnych z klasyfikacją wg wielkości i kształtu pozwala dobrać parametry klasyfikacji pozwalającej wyeliminować błędy operatora w klasyfikacji łąk użytkowanych na siedliskach świeżych. Wyniki wymagają weryfikacji na szerszym materiale, w szczególności rozszerzenia badań na inne mezoregiony.
Image processing during the human vision process tends to generalize images into homogenous areas. When interpreting grasslands on aerial photos and satellite images, image segments are understood as quasi-homogeneous vegetation units: what looks similar in a remotely sensed image is assumed to be similar in nature as well. Image segments are distinct due to a number of cues, including: color, texture, spatial frequency, contrast, size, shape, location, orientation, motion and stereo effect. It was found that four classes of meadow landscape-vegetation complexes may be distinguished based on colour components of the composition of two Landsat ETM+ images. Landscape-vegetation complexes are small geobotanic units corresponding to the nanochore level of physico-geographical units. The aim of this article was to find additional cues useful for meadow interpretation on satellite images. The hypothesis was that it was possible to employ size and shape factors in interpreting grasslands areas. Length, perimeter and area were measured for 52 segments. Classification parameters were adjusted in an empirical manner. Two indexes were produced: a stretch index and a size index calculated based on the three factors. Both indexes are required for identification of fresh meadows in use (complexes of U type), in opposition to other categories of grasslands. 13 U-type landscape--vegetation complexes were found during terrain research. Among them, 11 were correctly classified. 2 complexes of other types were incorrectly classified as U-type. Size and shape analysis appears to be an additional criterion in grassland interpretation.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2006, 16; 331-339
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie wyników klasyfikacji obrazów satelitarnych HYPERION i ALI
Comparison of HYPERION and ALI satellite imagery classification
Autorzy:
Hejmanowska, B.
Powiązania:
https://bibliotekanauki.pl/articles/130788.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obrazu
HYPERION
ALI
image classification
Opis:
Celem przeprowadzonych badan było porównanie wyników klasyfikacji obrazów satelitarnych - hiperspektralnych: HYPERION i wielospektralnych: ALI, zarejestrowanych w zakresach spektralnych podobnych do obrazu: LANDSAT. Testy prowadzono na obszarze leżącym na wschód od aglomeracji krakowskiej, dla którego dysponowano obrazami z platformy EO – 1 zarejestrowanymi w 2006 roku, dzięki projektowi KBN (nr 3T 09D 09429). W badaniach wykorzystano oprogramowanie specjalistyczne (ENVI 4.1) dedykowane opracowaniom danych teletedetekcyjnych. Obrazy HYPERION zostały wstępnie przetworzone w celu usunięcia zakłóceń spowodowanych wpływem atmosfery i tzw. efektem „smiling”. Klasyfikacje przeprowadzono tylko metodami tradycyjnie wykorzystywanymi w przetwarzaniu obrazów wielospektralnych, czyli za pomocą klasyfikacji nienadzorowanej i nadzorowanej. Założenie metodyczne porównania wyników klasyfikacji polegało na wykorzystaniu dla obu obrazów tych samych uczących pól treningowych i podobnych pól kontrolnych wykorzystywanych do oceny dokładności. Ponadto wszystkie parametry zastosowanych algorytmów były równie_ identyczne dla obu obrazów. Pola treningowe i testowe wybierano manualnie z wykorzystaniem kompozycji barwnych. W trakcie prowadzenia testów zaistniała konieczność zredukowania liczby analizowanych kanałów obrazu HYPERION, ponieważ w przeciwnym razie nie uzyskiwano zadawalających wyników klasyfikacji. W takim przypadku dokładność klasyfikacji obrazu HYPERION była wyższa ni_ dokładność klasyfikacji obrazu ALI. Natomiast wynik klasyfikacji wszystkich kanałów obrazu HYPERION albo w ogóle był nie do zaakceptowania, albo wynik klasyfikacji był znacznie gorszy ni_ w przypadku ALI i ograniczonej liczby kanałów HYPERION.
The main aim of the research was to compare the results of satellite image classification: HYPERION and ALI, recorded in a spectral range similar to LANDSAT. Analyses were performed using the test area to the east of Krakow. Satellite iamges were obtained in 2006 thanks to scientific project KBN (no. 3T 09D 09429). The image processed with ENVI. HYPERION was initially preprocessed to remove so-called atmospheric effects, and so-called “similing” effect. The classification was performed using conventional spectral methods: unsupervised and supervised classification. The background of the comparison was applied in the same training and control area, and the same parameters of classification. Training and control areas ware selected using colour compositions. In the research, a need to reduce the amount of HYPERION channels emerged, otherwise the classification results would not be possible to interpret. In such case, the accuracy of HYPERION channel reduction classification was higher than that of ALI. The result of classification of all HYPERION image channels, however, was either completely unacceptable, or the classification result was much worse than in the case of ALI and limited number of HYPERION channels.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17a; 291-300
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie cech strukturalnych obrazu Landsat ETM+ w klasyfikacji obiektowej kompleksów krajobrazowo-roślinnych
Application of structural features in the Landsat ETM+ image in object classification of landscape-vegetation complexes
Autorzy:
Kosiński, K.
Powiązania:
https://bibliotekanauki.pl/articles/130716.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
kompleks krajobrazowo-roślinny
klasyfikacja obiektowa
struktura
tekstura
filtracja kierunkowa
landscape-vegetation complex
object classification
structure
texture
directional filtering
Opis:
Kompleks krajobrazowo-roślinny zastosowano jako jednostkę podstawowa w rejestracji roślinności na kompozycji danych panchromatycznych LandsatETM+. Zastosowano sześć wskaźników struktury i tekstury: wariancje w oknie 5×5 pikseli (Var5×5), wskaźnik struktury pasowej (SSI) oraz trzy wskaźniki małych obiektów: obiektów wielkości 3×3 piksele (S3×3), jednego piksela (S1×1) i wskaźnik różnicowy (S3×3Dif). W obszarach miejskich możliwa jest identyfikacja kompleksów roślinności z zabudowa i kompleksów bez udziału roślinności.
Landscape vegetation complexes are used as the basic units for vegetation detection on Landsat ETM+ panchromatic data composition. Six structure and texture indexes are used: variance (Var5×5), strip structure index (SSI) and three small structure indexes: of size 3×3 pixels (S3×3), one pixel (S1×1) and differential index (S3×3Dif). Complexes of vegetation and buildings and complexes lack of vegetation may be distinguished in urban areas.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17a; 385-394
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie obiektowo zorientowanej analizy obrazu (GEOBIA) wysokorozdzielczych obrazów satelitarnych w klasyfikacji obszaru miasta Krakowa
Using the object-based image analysis (GEOBIA) in the classification of the very high resolution satellite images of Krakow municipality
Autorzy:
Wężyk, P.
de Kok, R.
Szombara, S.
Powiązania:
https://bibliotekanauki.pl/articles/130169.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obiektowa (GEOBIA)
Ikonos
QuickBird
automatyzacja
pokrycie terenu
OBIA (Object Based Image Analysis)
automation
land use
Opis:
Technologie teledetekcyjne oraz systemy GIS osiągnęły obecnie poziom rozwoju umożliwiający pełna implementacje automatycznych metod klasyfikacji oraz procesów kontroli i aktualizacji zasobów kartograficznych będących w posiadaniu administracji publicznej. Dane teledetekcyjne pozyskiwane nowoczesnymi metodami takimi jak: lotnicze kamery cyfrowe, skanery hiperspektralne, LiDAR badz VHRS - pozwalają na poprawne skonstruowanie procesu wspomagania podejmowania decyzji na poziomie lokalnym i regionalnym takich jak np. miejscowe plany zagospodarowania przestrzennego. Ogromne zbiory danych (np. LiDAR, VHRS) muszą być coraz częściej poddawane automatycznym procesom ich przetwarzania. Obiektowo zorientowana analiza obrazu (ang. Object Based Image Analysis; akronim: GEOBIA) - zwana potocznie klasyfikacja obiektowa, wykorzystuje zaawansowane algorytmy segmentacji rastra. Rozstrzygają one o liczbie generowanych obiektów na podstawie wartości jaskrawości piksela oraz „właściwości geometrycznych” (np. kształtu, grupowania się pikseli w homogeniczne obiekty, zwartości, etc). W kolejnych krokach obiekty te są klasyfikowane na podstawie licznych zależności i właściwości, jak np. parametru homogeniczności czy stosunku długości granic do powierzchni (wykrywanie krawędzi, budynków, działek etc). Klasyfikacja obiektowa może przyjąć strukturę hierarchiczna, to znaczy raz sklasyfikowane obiekty mogą posłużyć do stworzenia nowego wyższego hierarchicznie poziomu. Taka metodyka pozwala na przygotowanie scenariuszy postepowania klasyfikacyjnego zapisywanych do plików zwanych protokołami w oprogramowaniu DEFNIENS. Nowatorskie podejście do kwestii klasyfikacji obrazu bez potrzeby wykorzystywania pól treningowych zostało już potwierdzone wieloma projektami naukowymi i ich wdrożeniami (Wężyk, de Kok, 2005; de Kok, Wężyk, 2006). W prezentowanej pracy do przeprowadzenia klasyfikacji wykorzystano 2 sceny IKONOS z dnia 25.06.2005 roku (łączny obszar 194,7 km2) oraz 1 scenę QuickBird z dnia 07.09.2006 roku (167,7 km2). Prace zostały zlecone przez Biuro Planowania Przestrzennego UM Krakowa w listopadzie 2006 roku. Obrazy VHRS poddano ortorektyfikacji (Aplication Master 5.0, Inpho) w oparciu o współczynniki RPC ale także punkty dostosowania GCP pozyskane z ortofotomap Phare 2001 oraz NMT przekazanego przez BPP UMK (Wężyk et al., 2006). Do analizy obrazów VHRS wykorzystano kanał panchromatyczny (PAN) oraz wielospektralne (MS) zakresy promieniowania. Wstępne przetwarzanie kanałów PAN polegało na zastosowaniu filtrów krawędziowych (np. Lee Sigma), w wyniku działania których otrzymano tzw. obrazy pochodne wykorzystane w procesie segmentacji. Inne obrazy biorące udział w tym złożonym procesie składającym się z 11 kroków to: poszczególne kanały MS (Blue, Green, Red, NIR), dla których wykonano analizę głównych składowych (ang. Principal Component Analysis), mapa ewidencyjna (obraz rastrowy) wykorzystywana w projekcie kartowania zieleni rzeczywistej Krakowa (służąca głównie klasyfikacji budynków przy wykorzystaniu PC3), rastrowa warstwa sieci dróg pochodząca z wektoryzacji ekranowej VHRS i z map ewidencyjnych. W toku uzgodnień z BPP UMK podjęto decyzje o przyjęciu dwóch poziomów hierarchicznych klas pokrycia terenu. Poziom 1 składał się z 9-ciu klas zajmujących odpowiednio: tereny zainwestowane – 17,42%, zieleń wysoka – 24,99%, zieleń niska – 44,31%, zieleń terenów sportowych oraz ogródków działkowych – 1,39%, zbiorniki wodne i rzeki – 1,94%, infrastruktura drogowa – 3,48%, hałdy + wysypiska + odsłonięta gleba – 0,84%, grunty orne i uprawy – 5,35% oraz cień – 0,28% obszaru badan. Trzy klasy poziomu 1, tj.: tereny zainwestowane, zieleń niska i zieleń wysoka) zdecydowano się zaprezentować na wyższym – 2 poziomie szczegółowości. Wraz z pozostałymi klasami poziom ten składał się łącznie z 22 klas. Osiągnięte rezultaty potwierdziły szerokie możliwości stosowania automatycznych metod OBIA bazujących na VHRS i innych informacjach pochodzących z systemów GIS oraz z zasobów geodezyjnokartograficznych w celu ich aktualizacji.
Recent developments in Remote Sensing and GIS have reached maturity which allows to implement the research results into standardized process flows for updating and checking the municipality cadastral information. The database containing the city cadastre already handles data fusion methods itself. Available information considerably enhance information extraction from new data collections with high quality sensors such as LiDAR, photogrammetrical imagery and VHRS data. Huge amounts of available data must be processed in sequences to keep them handable. Transferable protocols for automatic handling of VHRS data can now be put into a full production process to assist the workflow of other image data from airborne platforms and integrate these GIS output into further cadastral GIS analysis. The data fusion within this project allows a highly detailed description of the city status-quo and the basis for change detection. Further these results are besides a very important archival inventory also a basis for decision support, now and in the future. The whole workflow was of a chain of previous research projects which were put into a commercial workflow. This study shows an experience report on, how the product chain was built-up and what type of products were delivered to the municipality of Krakow (Poland).
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17b; 791-800
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja obiektowa użytków zielonych z wykorzystaniem wieloletnich zmian NDVI i filtracji kierunkowych obrazu satelitarnego
Object grassland classification using multi-year NDVI changes and directional filtering of satellite image
Autorzy:
Kosiński, K.
Hoffmann-Niedek, A.
Powiązania:
https://bibliotekanauki.pl/articles/130960.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
użytki zielone
klasyfikacja obiektowa
NDVI
filtracja kierunkowa
Landsat
grassland
object classification
directional filtering
Opis:
W artykule przedstawiono algorytm półautomatycznej klasyfikacji obiektowej kompleksów krajobrazowo-roślinnych użytków zielonych na podstawie dwóch zobrazowań satelitów serii Landsat, wykonanych w odstępie 17 lat. NDVI z dwóch terminów, wskaźnik wieloletnich zmian NDVI oraz wskaźnik struktury pasowej wykorzystano do wydzielenia użytków zielonych spośród innych form użytkowania. Przedstawiono mapę poklasyfikacyjną okolic Bełchatowa. Wyróżniono 5 kategorii użytków zielonych.
Semi-automated object classification of grasslands is presented. Landscape-vegetation complexes were distinguished on panchromatic data composites of two Landsat ETM+ images registered on 1999-09-10 and 2001-05-01. Bitemporal spectral data were used for classification. Two Landsat images were used: TM, 19870503 and 2001-05-01. Four indices were calculated: NDVI 1987-05-03, NDVI 2001-05-01, wzNDVI87/01 (NDVI change index), and WSP (strip structure index). The analysis confirmed the hypothesis that meadows may be distinguished from arable lands and from formerly arable sods after directional filtering of the index of multi-year NDVI change. Cluster analysis was performed to classify landscape-vegetation complexes. The full algorithm is described. Some errors found during terrain verification are discussed. A postclassification map of the Bełchatów environs (central Poland) was developed. Five grassland categories were distinguished.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2008, 18a; 273-282
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja ziarniaków kukurydzy w oparciu o neuronową identyfikację kształtu
The classification of maizes kernels with supporting neuronal identification of shape
Autorzy:
Boniecki, P.
Nowakowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/336706.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
ziarniak
kukurydza
klasyfikacja
neuronowa analiza obrazu
classification
maize
corn kernel
neuronal image analysis
Opis:
Celem pracy było wytworzenie systemu informatycznego wspomagającego proces klasyfikacji ziarniaków kukurydzy w oparciu o neuronową analizę obrazu. W pracy wykorzystano metodę identyfikacji różnic kształtów analizowanych obiektów w oparciu o tzw. superformułę, zaproponowaną przez Johana Gielisa, pozwalającą na reprezentację dowolnego kształtu za pomocą sześciu niezależnych parametrów.
The aim of work was producing the computer system helping the process of classification of corn kernels using neuronal image analysis. In the project was used method of identification of shapes differences using superformula proposed by John Gielis, permitting on representation of any shape with six independent parameters.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 3; 14-17
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pattern recognition approach to differentiation of disease severity in patients with amyotrophic lateral sclerosis
Autorzy:
Jóźwik, A.
Sokołowska, B.
Niebroj-Dobosz, I.
Janik, P.
Kwieciński, H.
Powiązania:
https://bibliotekanauki.pl/articles/333433.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie obrazu
klasyfikacja K-NN
erytropoetyna
pattern recognition
k-NN classifier
amyotropic lateral sclerosis
erythropoietin
Opis:
A possibility of recognition of the clinical status of patients with amyotrophic lateral sclerosis (ALS) in relation to severity of the disease was investigated. Three groups: (i) healthy controls (n=15) and two subgroups of ALS patients (ii) mild (n=15) and (iii) severe (n=15) were considered as classes. Four features of the subjects: (i) their age (AGE) (ii) erythropoietin concentration in serum (SERUM), (iii) in cerebrospinal fluid (CSF), and (iv) duration time of the disease (Tdis) were used for classifier construction based on the k Nearest Neighbours (k-NN) rule, known from pattern recognition theory. The presented results demonstrate that the pattern recognition approach may be useful for the evaluation of the severity of the ALS disease.
Źródło:
Journal of Medical Informatics & Technologies; 2008, 12; 143-147
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wybrane przykłady wykorzystania morfologii matematycznej w przetwarzaniu obrazów w teledetekcji
Selected examples of applying mathematical morphology to image processing in remote sensing
Autorzy:
Kupidura, P.
Marciniak, J.
Koza, P.
Kowalczyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/130834.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
morfologia matematyczna
filtracja obrazu
klasyfikacja obiektowa
wykrywanie krawędzi
mathematical morphology
image filtration
object-oriented classification
edge detection
Opis:
Morfologia matematyczna stanowi zbiór nieliniowych operacji, umożliwiających zmianę struktury obrazu cyfrowego. Jej specyficzna natura pozwala na przetwarzanie obrazów w zależności od kształtu, wielkości, tekstury czy sąsiedztwa obiektów obecnych na zdjęciu. W artykule przedstawiono wyniki uzyskiwane w projekcie MNiSzW Nr N526 034 32/3448, poświęconym w całości wykorzystaniu operacji morfologicznych w przetwarzaniu danych teledetekcyjnych. Wnioski wynikające z przeprowadzonych badań potwierdzają wysoką skuteczność morfologii matematycznej w wielu różnorodnych zastosowaniach, jak filtracja dolnoprzepustowa, wydzielanie na obrazie heterogenicznych typów obiektów, czy wykrywanie krawędzi obiektów. W artykule przedstawiono analizę możliwości wykorzystania funkcji morfologicznych w przetwarzaniu danych teledetekcyjnych. Zaprezentowano również założenia darmowego oprogramowania BlueNote, tworzonego w ramach projektu.
The paper presents results of a research project concerning the application of mathematical morphology in remote sensing. Mathematical morphology was developed created in the 1960s by two Fench scientists: Jean Serra and George Matheron. Since then, the great progress in this discipline has led to the development of many different operators. Their most important advantage is involving important features of objects in the image, such as size, shape, texture, and neighbourhood. Because of that, selected morphological operators are used in digital image processing in many fields, including remote sensing. However, the analysis shows mathematical morphology to have an even greater potential in this field. The first line of thought presented is the object-oriented classification. The traditional, pixelbased algorithms are often ineffective when classifying selected heterogenic types of land cover. A morphological operator developed by Kupidura, involving a combination of results of opening and closing of the original image, allows to extract the class of orchards by using a simple pixelbased algorithm. The subsequent research showed that granulometric maps, first presented by Serra, which – for each pixel - generate a set of values denoting heterogeneity of the pixel neighbourhood, allow to extract the built-up class in a traditional classification process. The issue in which morphological operators prove their high efficiency is noise removal. Application of alternate filters allows to filter out both optical and microwave images with a high noise level. Noteworthy is that the filters show inpressive results wherever detail preservation is concerned. The project involved also experiments on edge detection with morphological gradient Preliminary results showed a high efficiency of those procedures comperable to Sobel’s gradient. An additional aim of the project was to develop software that would allow running any combination of morphological operators. The software called BlueNote will be available free of charge, which could lead to further increase of applications of mathematical morphology to remote sensing.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2008, 18a; 323-332
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metody parametrycznej w klasyfikacji obiektowej obrazu satelitarnego SPOT
Application of rule-based approach to object-oriented classification of SPOT satellite image
Autorzy:
Lewiński, S.
Bochenek, Z.
Powiązania:
https://bibliotekanauki.pl/articles/130535.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obiektowa
SPOT
pokrycie ziemi
użytkowanie ziemi
object-oriented classification
land use
land cover
Opis:
W artykule przedstawione są wyniki klasyfikacji obiektowej zdjęcia satelitarnego SPOT, o rozdzielczości przestrzennej 20 m. W klasyfikacji zastosowano zasady postępowania zbliżone do stosowanych w metodzie tzw. drzewa decyzyjnego. Podstawowe klasy pokrycia terenu są identyfikowane podczas sekwencji niezależnych procesów, w czasie których analizowane są obiekty jeszcze niesklasyfikowane w toku poprzednich procesów. Dodatkowo przyjęto założenie wykonania klasyfikacji bez stosowania metody Najbliższego Sąsiada (dostępnej w oprogramowaniu eCognition). Treść zdjęcia satelitarnego została podzielona z zastosowaniem parametrów charakteryzujących w sposób bezpośredni obiekty. Wykorzystano również specjalnie w tym celu opracowane funkcje. Algorytm postępowania rozpoczyna się od rozpoznania klasy wody, której obiekty są definiowane w wyniku procesu wielopoziomowej segmentacji. Następnie wykonywana jest nowa segmentacja dla pozostałych klas. Z treści zdjęcia zostaje wydzielana ogólna klasa lasów a po niej zabudowa; obie klasy dzielone są później na podklasy. Pozostałe, jeszcze nierozpoznane, obiekty dzielone są na łąki i pola. W drugim etapie klasyfikacji, na podstawie już sklasyfikowanych obiektów wyłaniane są dodatkowe klasy: tereny podmokłe, działki i sady, zieleń miejska, place budów oraz zmiany w lesie. W sumie rozpoznano 13 klas. Końcowy wynik klasyfikacji został opracowany z zastosowaniem procedury generalizacji mającej na celu uzyskanie danych spełniających kryterium jednostki odniesienia o wielkości 4 ha. Całkowita dokładność klasyfikacji wyniosła ponad 89%.
The paper presents results of object-oriented classification of whole 20-meter resolution SPOT scene covering the Kujawy region. The classification approach applied in this work was similar to that used in the so-called decision tree method. The main land cover classes were identified in a sequence of independent processes, assuming that each subsequent process deals solely with objects not classified yet. Another assumption was to implement rule-based approach rather than the Standard Nearest Neighbor classifier (available in eCognition software). In this approach, contents of satellite image were characterized by various spectral/texture parameters directly describing individual land cover/land use classes; in addition, by pre-defined functions, determined on the basis of graphical analysis of feature space constructed for particular terrain objects were used. The classification process begins with recognition of water class the objects of which were delineated using multiresolution segmentation. New segmentation is prepared for the remaining land cover classes. Subsequently, the general forest class and the urban class are discriminated; at the next stage, both classes are divided into sub-categories. Consequently, broad agricultural and grassland classes are determined. At the second stage of classification, more detailed classes are discriminated within the general land cover categories: wetlands, orchards, urban green areas, construction sites, and deforestations. Overall, 13 land cover/land use categories were discriminated in the work presented. The final classification map was prepared using the aggregation procedure to obtain a map resolution fulfilling the 4ha size of Minimum Mapping Unit. The accuracy was assessed using the method of randomly distributed points; the number of points assigned to each class for checking was proportional to the acreage of that class. The overall accuracy of all classes checked in the verification process reached 89%. The method presented was applied to two other test sites in Poland: the regions of Podlasie and Wielkopolska. Despite differences in land cover/land use patterns, both regions were classified with a comparable, high accuracy.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2008, 18a; 355-364
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dyskryminacja odmian ziarna pszenicy na podstawie cech geometrycznych
Discrimination of wheat seed varieties on the basis of geometrical characteristics
Autorzy:
Zapotoczny, P.
Powiązania:
https://bibliotekanauki.pl/articles/291520.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
ziarno
analiza obrazu
klasyfikacja
geometria
seed
image analysis
classification
geometry
Opis:
Celem pracy było poszukiwanie takich wyróżników geometrii 16 odmian ziarna pszenicy, które pozwolą na ich dyskryminacje. Do identyfikacji właściwości geometrycznych wykorzystano stanowisko do komputerowej analizy obrazu, oparte na pozyskiwania obrazu ziarniaków za pomocą aparatu fotograficznego. Każdy z ziarniaków został opisany przez 66 zmiennych geometrycznych. Analiza statystyczna wyników przebiegała dwuetapowo. W pierwszym etapie przeprowadzono redukcję zmiennych do najlepiej dyskryminujących, natomiast w drugim etapie przeprowadzono analizę dyskryminacyjną. Błąd klasyfikacji odmian jarych wyniósł 10,55%, natomiast odmian ozimych 4,58%.
The purpose of the work was to try to find these geometry characteristics for 16 wheat seed varieties, which will allow their discriminations. Workstation for computer image analysis, based on acquiring seed image using a camera, was used for identifying geometrical properties. Each seed was described by 66 geometrical variables. Statistical analysis of results proceeded in two stages. The first stage involved reduction of variables to those discriminating best, whereas discriminant analysis was made in the second stage. Classification error for spring varieties was 10.55%, and 4.58% for winter varieties.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 5, 5; 319-328
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The dedicated decision support system in recognition of some uncertain disease entities
Autorzy:
Porwik, P.
Powiązania:
https://bibliotekanauki.pl/articles/333041.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie obrazu
klasyfikacja danych
sieci neuronowe
systemy wspomagania decyzji
image recognition
data classification
neural network
decision support systems
Opis:
This work presents the principles of image recognition, where quality-based methods are applied. The neural networks and additional software have been proposed. This goal was achieved by using non-parametric recognition algorithms. In this paper the two-state hybrid classification method has been proposed, where artificial intelligence algorithm is included. In recognition process, the learning method, selection and optimization of diagnostic parameters have been introduced. The integrated part of the classifier structure is voting mechanism, which indicates incorrect states of the system – for example the unrecognized images. Effectiveness of the system has been shown by means of examples, where ambiguous data have been incorporated – it is very often a practice of medical diagnostics.
Źródło:
Journal of Medical Informatics & Technologies; 2009, 13; 97-100
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Brain atrophy progress detection in MR images
Autorzy:
Kuczyński, K.
Stęgierski, R.
Siczek, M.
Powiązania:
https://bibliotekanauki.pl/articles/333021.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
wymiar fraktalny
obrazowanie metodą rezonansu magnetycznego
klasyfikacja medyczna obrazu
brain atrophy detection
fractal dimension
MRI
medical image classification
Opis:
Alzheimer's, Parkinson's and other dementive diseases currently pose an important social problem. High brain atrophy level is one of the most important symptoms of these disorders, but it also may result from normal ageing processes. The purpose of the presented research is to design methods that support detection of dementia symptoms in radiological images. The proposed framework consists of image registration procedure, brain extraction and tissue segmentation and the exact analysis of image series (fractal and volumetric properties).
Źródło:
Journal of Medical Informatics & Technologies; 2010, 16; 187-192
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metody wektorów nośnych oraz komputerowej analizy obrazu w klasyfikacji korzeni marchwi
Application of support vector machines and digital image analysis in carrot roots classification
Autorzy:
Janaszek, M.
Trajer, J.
Powiązania:
https://bibliotekanauki.pl/articles/290488.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
analiza obrazu
klasyfikacja
marchew
SVM
digital image analysis
classification
carrot
Opis:
W pracy poruszono zagadnienie podejmowania decyzji o przydatności przetwórczej marchwi na podstawie uproszczonej informacji o barwie jej korzeni. Sprawdzono w jakim stopniu barwa pozwoli na odwzorowanie skupień korzeni o podobnych cechach chemicznych, decydujących o dalszym przeznaczeniu surowca. Do klasyfikacji korzeni wykorzystano metodę wektorów nośnych (SVM). Barwę marchwi odczytano z cyfrowych obrazów jej korzeni. Trafność klasyfikacji w zbiorze testowym wskazuje, że barwę można wykorzystać do opracowania wielokryterialnej klasyfikacji marchwi pod względem jej przydatności przetwórczej.
The article presents the study concerning the question of deciding on the processing suitability of carrot on the basis of simplified information about the color of roots. A possibility of mapping clusters of carrot roots having a similar chemical composition, which determine the further allocation of raw material, was examined. In classification of the roots support vector machine (SVM) was used. Carrot color was read from a digital image of its roots. Classification accuracy in the test set indicates that the color can be used to develop a multi-classification of carrots in terms of its processing suitability.
Źródło:
Inżynieria Rolnicza; 2010, R. 14, nr 7, 7; 75-80
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aparaturowe i metodologiczne aspekty ilościowej analizy mikrostruktury żeliwa
Quantitative analysis of cast iron microstructure in terms of the apparatus and methodology
Autorzy:
Warmuzek, M.
Boroń, Ł.
Tchórz, A.
Powiązania:
https://bibliotekanauki.pl/articles/391395.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Odlewnictwa
Tematy:
mikrostruktura
analiza obrazu
grafit
żeliwo
parametry stereologiczne
klasyfikacja grafitu
microstructure
image analysis
graphite
cast iron
stereological parameters
graphite classification
Opis:
W pracy porównano wyniki zastosowania różnych systemów obrazowania mikrostruktury (mikroskop świetlny oraz tomograf rentgenowski) oraz różnych systemów analizy obrazu do pomiaru wybranych parametrów stereologicznych i geometrycznych dla dwóch modeli morfologicznych, występujących w stopach odlewniczych, na przykładzie żeliwa z grafitem sferoidalnym i kratkowym. Wykazano statystycznie istotne różnice pomiędzy uzyskanymi wynikami pomiarów, spowodowane przede wszystkim jakością obrazu poddanego analizie oraz lokalnymi cechami geometrycznymi analizowanych obiektów. Porównano wyniki klasyfikacji wydzieleń grafitu według klas wielkości przyjętych w obowiązującej normie PN-EN ISO 945-1, przeprowadzonej na podstawie różnych procedur obrazowania.
In this work the results of the application of different imaging techniques and image analysis systems for measurements of chosen either stereological parameters or geometrical features for some of morphology models occurring in the cast alloys, especially taking into account cast iron with either spheroidal or vermicular graphite have been compared and interpreted. The statistical important difference of the obtained results have been stated and recognized as caused first of all by quality of analyzed images and local geometry features of the analyzed objects. The results of the graphite particles classification according to the size class in the actual standard PN-EN ISO 945-1, using different imaging and analysis procedures.
Źródło:
Prace Instytutu Odlewnictwa; 2011, 51, 3; 59-87
1899-2439
Pojawia się w:
Prace Instytutu Odlewnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies