Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "heavy weather" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
The effect of heavy precipitation on the infiltration and inflow into small sewage treatment plants in 2010
Autorzy:
Kaczor, G.
Powiązania:
https://bibliotekanauki.pl/articles/60233.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich PAN
Tematy:
heavy rainfall
infiltration
inflow
small sewage treatment plant
sewage treatment plant
sewer system
weather
treatment plant
Malopolska voivodship
Krakow city
mechanical treatment plant
biological treatment plant
modernization
Opis:
The aim of the study was to determine the extent to which heavy rainfall, that occurred in 2010, affected the infiltration into the selected sewage treatment plants in the Małopolskie voivodeship. The research was conducted in four separate sewer systems, located in poviats adjacent to the city of Kraków, discharging sewage to mechanical-biological treatment plants with a capacity below 1000 m3•d-1. The amount of sewage and extraneous water in the average wet year (2008) were used as control. As a result of heavy precipitation in 2010 the sewer system A received 18 539 m3 more extraneous water than in 2008 (increase by 343%), the sewer sys-tem B - 22 822 m3 (increase by 163%), the sewer system C - 109 715 m3 (increase by 248%) and the sewer system D - 30 796 m3 (increase by 303%). Heavy precipitation in 2010 caused the increase of infiltration and inflow by 264% on average in all studied sewer systems compared to the average wet year. As the result of precipitation, whose annual total in 2010 was higher by 65% than the normal value in 2008, there was an increase in the annual share of extraneous water from 5.3 to 19.7% depending on the facility. The volume of extraneous water, which was discharged into the studied treatment plants in 2010 (the period of heavy rainfall), constituted the following share of the annual value: in the sewer system A - 41.3%, in the sewer system B - 21.2%, in the sewer system C - 14.4%, in the sewer system D - 22.9%. Assuming the average gross amount of 3 PLN paid for treatment of 1 m3 of sewage, cost of extraneous water disposal in 2010 amounted from 78 533 PLN to 552 165 PLN, depending on the facility. The results obtained in the present study suggest that eliminating or reducing infiltration and inflow into the analyzed sewer systems would allow for large financial savings associated with reducing costs both for their transport and treatment as well as for modernization of facilities to enhance their hydraulic eapacity.
Źródło:
Infrastruktura i Ekologia Terenów Wiejskich; 2011, 12
1732-5587
Pojawia się w:
Infrastruktura i Ekologia Terenów Wiejskich
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Operability guidelines for product tanker in heavy weather in the Adriatic Sea
Autorzy:
Mudronja, L.
Katalinić, M.
Bošnjak, R.
Vidan, P.
Parunov, J.
Powiązania:
https://bibliotekanauki.pl/articles/320831.pdf
Data publikacji:
2014
Wydawca:
Polskie Forum Nawigacyjne
Tematy:
operation criteria
sustainable speed
Tabain wave spectrum
integrated navigation system
Opis:
This paper presents operability guidelines for seafarers on a product tanker which navigates in the Adriatic Sea during heavy weather. Tanker route starts from the Otranto strait in the south to the island Krk in the north of Adriatic Sea. Heavy weather is caused by south wind called jugo (blowing from E-SE to SS-E, sirocco family). Operability guidelines are given based on an operability criteria platform for presenting ship seakeeping characteristics. Operability criteria considered in this paper are propeller emergence, deck wetness and bow acceleration of a product tanker. Limiting values of mentioned criteria determine sustainable speed. Heavy weather is described by extreme sea state of 7.5 m wave height. Wave spectrum used in this paper is Tabain spectrum which is developed specifically for Adriatic Sea. Seafarer’s approach of decisions making in extreme weather is also shown and servers as a guideline for further research of the authors.
W artykule przedstawiono propozycję wytycznych operacyjnych dla żeglugi tankowca na Morzu Adriatyckim podczas pogody sztormowej. Rozpatrywany szlak zaczyna się w cieśninie Otranto na południu i prowadzi do wyspy Krk na północy. Założono, że pogoda sztormowa jest spowodowana przez wiejący z kierunku SS-E wiatr południowy Jugo z grupy wiatrów lokalnych Sirocco. Zalecenia operacyjne zostały opracowane na podstawie kryteriów użytecznych dla osób odpowiadających za wachtę morską. Za takie uznano przede wszystkim: aspekt wynurzania się śruby napędowej, czynnik zalewania pokładu i przyspieszenia rejestrowane na dziobie statku. Wartości graniczne wspomnianych kryteriów określają dopuszczalną prędkość statku. Pogoda sztormowa została opisana przez dopuszczalny stan morza wyrażony wysokością fal (7.5 m). Dla opisu spektrum fal zastosowano kryterium Tabaina, najlepiej opisujące specyfikę Morza Adriatyckiego. Zaproponowane podejście zostanie również wykorzystane przez autora w dalszych badaniach.
Źródło:
Annual of Navigation; 2014, 21; 95-106
1640-8632
Pojawia się w:
Annual of Navigation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ship Route Design for Avoiding Heavy Weather and Sea Conditions
Autorzy:
Cai, Y.
Wen, Y.
Wu, L.
Powiązania:
https://bibliotekanauki.pl/articles/116290.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Ship Route
Ship Route Design
green energy policy
Heavy Weather
Avoiding Heavy Weather
Avoiding Sea Conditions
Baltic Sea
Gulf of Finland
Opis:
This paper covers the current state of maritime oil transportation in the Baltic Sea and the development of oil transportation in the 2000s, as well as estimations of transported oil volumes in 2020 and 2030 in the Gulf of Finland. The scenarios were formulated on the basis of a current state analysis, energy and transportation strategies and scenarios and expert assessments. The study showed that the volumes of oil transportation in the Gulf of Finland will increase only moderately compared to the current status: 9.5-33.8 %, depending on the scenario. Green energy policy favours renewable energy sources, which can be seen in the smaller volumes of transported oil in the 2030 scenarios compared to the 2020 scenarios. In the Slow development 2020 scenario, oil transport volumes for 2020 are expected to be 170.6 Mt (million tonnes), in the Average development 2020 187.1 Mt and in the Strong development 2020 201.5 Mt. The corresponding oil volumes for the 2030 scenarios were 165 Mt for the Stagnating development 2030 scenario, 177.5 Mt for the Towards a greener society 2030 scenario and 169.5 Mt in the Decarbonising society 2030 scenario.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2014, 8 no. 4; 551-556
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation study on the Influence of EEDI requirements to shiphandling in heavy weather
Autorzy:
Nishizaki, C.
Okazaki, T.
Yabuki, H.
Yoshimura, Y.
Powiązania:
https://bibliotekanauki.pl/articles/116458.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
ship handling
Energy Efficiency Design Index (EEDI)
CO2
heavy weather
main engine
Energy Efficiency Operational Index (EEOI)
Maritime Environmental Protection Committee (MEPC)
Pure Car Carrier (PCC)
Opis:
In order to reduce the CO2 emission from ships, International Maritime Organization executes the restriction of Energy Efficiency Design Index (EEDI) which limits amount of CO2 when freight of one ton is carried at one mile. Although the realization of higher efficiency of main engine without reduction of engine output is the best solution, it might be impossible. To comply with the EEDI requirements, it is assumed that the ship’s engine power becomes smaller than the existing ship by means of improving the ship propulsive efficiency. However, shiphandling in rough seas is expected to become difficult when the engine power is reduced. In this paper it is shown that the influence of the degraded main engine exerts on the safety of shiphandling in heavy weather based on the simulation study. In these experiments, both the simulation model that decreased engine power corresponding to EEDI requirement and that with the conventional engine power were tested, and masters in active service maneuvered the test ships in the rough seas.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 4; 855-860
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies