Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "gazy, P." wg kryterium: Wszystkie pola


Tytuł:
Aircraft emissions during various flight phases
Emisje podczas różnych faz lotu samolotów
Autorzy:
Głowacki, P.
Kawalec, M.
Powiązania:
https://bibliotekanauki.pl/articles/133264.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Naukowe Silników Spalinowych
Tematy:
turbine engine
pollutants
exhaust emissions
silnik turbinowy
emisja gazów wylotowych
gazy trujące
Opis:
Article presents methodology of pollutants quantitative estimation emitted by turbine engines. Provides calculation results of aircraft CO2, CO and NOx effusion using fuel consumption data taken from aircraft Flight Data Recorder (FDR) in the so–called landing and takeoff cycle (LTO) and during remaining flight phases (climb from 3000 feet to cruise altitude, cruise, descent to 3000 feet) of various aircraft types. The authors would like to draw attention of the aviation professionals to the fact that amount of toxic content in the exhaust from the turbine engine is significant especially during cruise, but turbine engine emission standards are applied only to LTO cycle defined in the ICAO Annex 16 vol.2. The article gives an example of CO and NOx emission estimation based on engine performance taken from ICAO Engine Emission Data Bank. Such engine authors named “ideal”. Calculations were done using actual values of aircraft fuel consumption and duration of the airplane maneuvers for each flight.
Artykuł opisuje metodologię ilościowego oszacowania emisji toksycznych składników spalin przez lotnicze silniki turbinowe. Prezentuje wyniki obliczeń emisji CO2, CO i NOx na podstawie danych z pokładowego rejestratora parametrów lotu samolotu. Kalkulacji dokonano dla cyklu startu i lądowania i pozostałych faz lotu (wznoszenie z 3000 stóp do wysokości przelotowej, przelot, schodzenie do wysokości 3000 stóp) samolotów różnych typów. Autorzy pragną zwrócić uwagę ekspertom zajmującym się lotnictwem na fakt, że ilość toksycznych składników spalin emitowanych przez silniki odrzutowe jest szczególnie duża w trakcie przelotu, a normy obowiązują dla cyklu startu i lądowania zdefiniowanego w aneksie 16 t.2 ICAO.W artykule podano przykłady oszacowania emisji CO i NOx posługując się charakterystykami silników opracowanym i na podstawie danych zawartych w bazie danych ICAO. Silniki te nazwano „idealnymi”. Obliczeń dokonano posługując się bieżącymi danymi zużycia paliwa i czasu manewrów samolotów dla każdego lotu.
Źródło:
Combustion Engines; 2015, 54, 3; 229-240
2300-9896
2658-1442
Pojawia się w:
Combustion Engines
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Atmospheric chemistry and climate in the Anthropocene
Chemia atmosferyczna i klimat w Antropocenie
Autorzy:
Crutzen, P. J.
Wacławek, S.
Powiązania:
https://bibliotekanauki.pl/articles/106546.pdf
Data publikacji:
2014
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
greenhouse gases
greenhouse effect
climate changes
ozone hole
Anthropocene
gazy cieplarniane
efekt cieplarniany
zmiany klimatyczne
dziura ozonowa
Opis:
Humankind actions are exerting increasing effect on the environment on all scales, in a lot of ways overcoming natural processes. During the last 100 years human population went up from little more than one to six billion and economic activity increased nearly ten times between 1950 and the present time. In the last few decades of the twentieth century, anthropogenic chlorofluorocarbon release have led to a dramatic decrease in levels of stratospheric ozone, creating ozone hole over the Antarctic, as a result UV-B radiation from the sun increased, leading for example to enhanced risk of skin cancer. Releasing more of a greenhouse gases by mankind, such as CO2, CH4, NOx to the atmosphere increases the greenhouse effect. Even if emission increase has held back, atmospheric greenhouse gas concentrations would continue to raise and remain high for hundreds of years, thus warming Earth’s climate. Warming temperatures contribute to sea level growth by melting mountain glaciers and ice caps, because of these portions of the Greenland and Antarctic ice sheets melt or flow into the ocean. Ice loss from the Greenland and Antarctic ice sheets could contribute an additional 19-58 centimeters of sea level rise, hinge on how the ice sheets react. Taking into account these and many other major and still growing footprints of human activities on earth and atmosphere without any doubt we can conclude that we are living in new geological epoch named by P. Crutzen and E. Stoermer in 2000 - “Anthropocene”. For the benefit of our children and their future, we must do more to struggle climate changes that have had occurred gradually over the last century.
Człowiek wywiera coraz większy wpływ na środowisko na różne sposoby, w wielu przypadkach ostro ingerując w procesy naturalne. W ciągu ostatnich 100 lat liczebność ludzkiej populacji wzrosła - z nieco ponad 1 mld do 6 mld, a od 1950 roku do chwili obecnej nastąpił dziesięciokrotny rozwój działalności gospodarczej. W ciągu kilku ostatnich dekad XX wieku antropogeniczna emisja freonów doprowadziła do drastycznego spadku poziomu ozonu stratosferycznego, tworząc dziurę ozonową nad Antarktydą. Następstwem tego zjawiska jest wzrost promieniowania UV-B, który pociąga za sobą katastrofalne skutki, m.in. zwiększa ryzyko zachorowań na raka skóry. Uwalniane do atmosfery, przez człowieka, w dużych ilościach gazy cieplarniane, takie jak CO2, CH4, NOx, powodują zwiększenie efektu cieplarnianego. Nawet jeśli wzrost emisji zostanie zatrzymany, stężenia gazów cieplarnianych w atmosferze będą nadal rosnąć i pozostaną na wysokim poziomie przez setki lat, a to doprowadzi do ocieplenia klimatu na Ziemi. Wzrost temperatury przyczyni się do aprecjacji poziomu wód morskich. Będzie to spowodowane topnieniem lodowców górskich i czap lodowych. Utrata lodu Grenlandii i lądolodów Antarktydy, w zależności od tego, w jaki sposób zareagują na ocieplenie, może przyczynić się do wzrostu poziomu mórz i oceanów nawet o dodatkowych 19-58 centymetrów. Biorąc pod uwagę wyżej wymienione przykłady i wiele innych ważnych, wciąż wzrastających, śladów działalności człowieka na Ziemi bądź w atmosferze, bez żadnych wątpliwości można stwierdzić, że żyjemy w nowej epoce geologicznej nazwanej przez P. Crutzena i E. Stoermera w 2000 roku Antropocenem. Dla dobra naszych dzieci i ich przyszłości musimy intensywniej walczyć ze zmianami klimatycznymi, które miały miejsce w ciągu ostatniego stulecia.
Źródło:
Chemistry-Didactics-Ecology-Metrology; 2014, 19, 1-2; 9-28
2084-4506
Pojawia się w:
Chemistry-Didactics-Ecology-Metrology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zalety i wady metody ozonowania w fazie gazowej
Advantages and disadvantages of the ozonization method in gaseous phase
Autorzy:
Waluś, J.
Tatoj, P.
Kaczyńska, T.
Palica, M.
Chmiel, K.
Powiązania:
https://bibliotekanauki.pl/articles/1826294.pdf
Data publikacji:
2001
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
gazy odlotowe
odór powietrza
stężenie odarantu
ozonowanie
Opis:
Obecność odorantów w gazach odlotowych w szeregu technologii wiąże się z ich uciążliwością zapachową w otoczeniu. Dlatego podejmowane są badania różnych metod unieszkodliwiania zapachowego takich zanieczyszczeń. Na V Międzynarodowym Sympozjum "Zintegrowane systemy zapobiegania emisji zanieczyszczeń" (Międzyzdroje, kwiecień 1997) J. Kośmider przedstawiła koncepcję krajowej strategii ograniczenia odorowej uciążliwości powietrza oraz procedur licencyjnych i kontrolno - pomiarowych [1,2]. Jak dotąd w Polsce dopuszczalne stężenia większości odorantów nie zostały określone przepisami, choć lista związków emitowanych do powietrza atmosferycznego, a podlegających kontroli sukcesywnie się wydłuża. Wśród licznych metod oczyszczania gazów odlotowych zawierających tzw. odoranty, najbardziej w ostatnich latach rozwinęły się metody biologiczne, zwłaszcza biofiltracja, charakteryzująca się niskimi kosztami jednostkowymi [3,4], która jednak nie jest uniwersalna. Stosuje się ją wówczas, gdy gazy odlotowe zawierają określony związek, natomiast w wypadku mieszanin różnych związków niekiedy zawodzi. Dlatego alternatywą do biofiltracji może być wówczas ozonowanie w fazie gazowej. I. Pollo [5] stwierdza m.in., że ozon daje początek rozpadowi związków makromolekularnych na monomolekularne, utlenia związki organiczne i nieorganiczne (w tym cyjanki, siarczki, azotyny) i ma działanie bakteriobójcze. Ze względu na bardzo dobre własności utleniające stosuje się go do redukcji trujących i trudno utleniających się związków, np. pestycydów, związków chloro- i fosforoorganicznych, fenoli, amin, pochodnych ropy naftowej, usuwania par rtęci z powietrza, czy też w procesach dezodoryzacji. Używając jednak ozonu w procesach dezodoryzacyjnych należy sobie zdawać sprawę, że jest on czynnikiem toksycznym już przy niewielkich wyczuwalnych stężeniach. Poza bezpośrednim oddziaływaniem na systemy redoksowe i utlenianiem aminokwasów ozon powoduje uwalnianie z tkanek adrenaliny i jej pochodnych, a także histaminy, a skutki działania ozonu na organizmy żywe są porównywalne do skutków działania jonizującego. Wg [5] próg wyczuwalności ozonu zawiera się w granicach 4ź104 0,98 mg/m3, przy czym już dla koncentracji 0,4 mg/m3 obserwuje się u ludzi trudności koncentracji i bezsenność. Stąd wynika zasadnicze ograniczenie ozonowania w fazie gazowej, związane z usunięciem nieprzereagowanego ozonu z gazów po ich oczyszczeniu. Celem badań było określenie skuteczności ozonowania w funkcji stężenia ozonu, stężenia wybranych odorantów i czasu kontaktu. Przy wyborze odorantów kierowano się następującymi przesłankami: - w praktyce przemysłowej odoranty winny być spotykane przy stężeniach stanowiących o ich uciążliwości zapachowej - winny reprezentować związki różnego rodzaju - ich oznaczenie nie powinno nastręczać trudności - praca układu wytwarzającego i dozującego winna być stabilna, zaś ciśnienie cząstkowe par odorantów ma odpowiadać ciśnieniu wystarczającemu do uzyskania założonego stężenia odorantu. Ozonowanie zanieczyszczeń w fazie gazowej wiąże się jednak z pojawieniem szeregu problemów technicznych. Uzyskanie założonej skuteczności procesu dla określonego stężenia odorantu wymaga wystarczającego nadmiaru ozonu i odpowiedniego czasu kontaktu. Wzrost stosunku / Cod prowadzi wprawdzie do zwiększenia , ale w gazach poreakcyjnych pozostaje nieprzereagowany ozon, który trzeba neutralizować w dodatkowym węźle instalacji po reaktorze. Powoduje to zwiększenie kosztów całej instalacji dezodoryzującej. Zbyt mała ilość ozonu wiąże się z kolei z niską skutecznością procesu. Jak stwierdzono w badaniach, wzrostowi skuteczności sprzyja zwiększenie czasu kontaktu. Ponieważ stosowane czasy wynosiły kilkanaście- kilkadziesiąt sekund, uzyskanie takich czasów wymagałoby bardzo małych prędkości gazów w przewodach odlotowych, czyli dużych przekrojów kanałów w instalacjach przemysłowych. Jest to niewątpliwie poważny mankament metody ozonowania. Istotny też jest problem pojawienia się po reakcji nowych związków wymagających identyfikacji. Związki takie, choć występujące w znacząco mniejszych ilościach, niż usuwany odorant, mogą być bardziej toksyczne, niż odoranty poddane ozonowaniu. Dlatego użycie metody ozonowania dla określonej mieszaniny gazów musiałoby być poprzedzone szczegółowymi badaniami dotyczącymi zarówno uzyskiwanych skuteczności, jak i charakteru powstających zanieczyszczeń wtórnych. Jednym ze sposobów uniknięcia zasygnalizowanych trudności jest znacznie bardziej efektywne ozonowanie w fazie ciekłej, co jednak wiąże się ze wzrostem ogólnych kosztów procesu oczyszczania gazów z odorantów, zwłaszcza że występująca ich uciążliwość zapachowa pojawia się już przy niskich stężeniach. Należy wreszcie zaznaczyć, że węzeł destrukcji ozonu resztkowego bazujący na rozkładzie termicznym może decydować o ekonomice całej instalacji. Dlatego ogólna konkluzja z przeprowadzonych badań sprowadza się do stwierdzenia, że choć ozonowanie w fazie gazowej prowadzi do znaczącej redukcji zanieczyszczeń, to nadaje się do aplikacji tylko w specyficznych warunkach i należy je stosować bardzo rozważnie.
The own ozonization method in gaseous phase for such substances as lavender, clove and rose oils, triethylamine, ethyl and isoamyl alcohols, ethyl acetate and toluene have been discussed. Mass concentrations of odour-generating agents and ozone, as well as the contact time in the flow reactor have been selected as independent variables. On the other hand, the process efficiency in the range where the ozonization is not fully effective has been taken as a dependent variable. The determination of oils has been carried out using the olfactomertic method, whereas the rest of odour-generating agents - by the chromatographic one. It has been proved that the high process efficiency requires the high ozone overdose and the long contact time, what indicates that the ozonization method is recommended when other gas cleaning methods are not effective. The method described usually requires an additional process line for the neutralization of residual ozone. The data obtained enable one to predict ozonization conditions, the process efficiency for the odour-generating agents tested as well as to evaluate advantages and disadvantages of the method. A main advantage of the ozonization in gaseous phase is possibility of its usage for various ill-odoriferous substances. However, such gas cleaning method manifests a number of disadvantages, e.g. the high ozone excess and long contact time necessary for obtaining the established efficiency. Typically, non-reacted ozone should be neutralized in the separate process line just after the reactor, thus increasing costs. A serious disadvantage of the method is the generation of new compounds, which require identification. Although appearing in significantly lower quantities than odour-generating substance, such compounds can be more toxic. Therefore, use of the ozonization method should be proceeded by detailed investigations dealing with both the process efficiency and the character of secondary contaminants. In summing up, one may conclude that the ozonization method in gaseous phase can be employed only in specific conditions.
Źródło:
Rocznik Ochrona Środowiska; 2001, Tom 3; 33-52
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ wybranych warunków atmosferycznych na czas retencji gazów gaśniczych
Effects of Temperature, Pressure and Humidity on Retention Time Extinguishing Gases
Autorzy:
Kubica, P.
Wnęk, W.
Tuzimek, Z.
Domżał, A.
Powiązania:
https://bibliotekanauki.pl/articles/136661.pdf
Data publikacji:
2013
Wydawca:
Szkoła Główna Służby Pożarniczej
Tematy:
SUG gazowe
czas retencji
gazy gaśnicze
retention time
extingushing gases
Opis:
Skuteczność gaszenia gazami gaśniczymi za pomocą stałych urządzeń gaśniczych (SUG) zależy od czasu utrzymywania stężenia, tzw. czasu retencji. Odpowiednio długi czas retencji umożliwia wychłodzenie źródła pożaru oraz interwencję ekip ratowniczych. Na długość czasu retencji ma wpływ przede wszystkim szczelność pomieszczenia oraz różnica gęstości mieszaniny gaśniczej i otaczającego powietrza. Gęstość gazów uzależniona jest od warunków klimatycznych, w szczególności: ciśnienia, temperatury i zawartości pary wodnej. Na podstawie analizy przeprowadzonej w oparciu o wybrany model stosowany do wyznaczania czasu retencji, wykazano że pomijanie wpływu tych wielkości może wiązać się z istotnym błędem przy wyznaczaniu czasu retencji gazów o gęstościach bliskich gęstości powietrza.
The effectiveness of fixed gaseous extinguishing system depends on retention time – period time after discharge in which concentration of agent is high enough. It is important that an effective extinguishant concentration not only be achieved, but is maintained for a sufficient period of time to allow effective emergency action. This equally important in all classes of fires since a persistent ignition source (e.g. an arc, heat source or deep-seated fire) can lead to resurgence of the initial event once the extinguishant has dissipated. The longer the gas remains after the discharge, the better the level of protection offered. It is essential to determine the likely period during which the extinguishing concentration will maintained within the protected enclosure. The retention time can be determined in two ways: 1) full discharge test and measurement of gas concentrations at the required height; 2) door fan test and calculations based on the model gas flow out. The first method is expensive and rarely applied. Using the second method requires choose an appropriate model. Each of the known models assume ideal mixing of gas during its discharge from the cylinder. The air-agent mixture is created. This mixture then flows out the lower leakages, and air influences the upper. Difference in density of the ambient air ρ0 and the mixture inside enclosure ρm drives the flow of gases. Currently the following models are used to determine the retention time: a) model with a sharp interface between the agent-air mixture and the inflowing air (fig. 1) – Assuming that gas species do not diffuse results in an infinitesimally thin interface between inflowing fresh air and the agent–air mix resulting after dis-charge – model used in the standard NFPA 2001:2012 [1]; b) with a wide interface between the agent-air mixture and the inflowing air (fig. 2) – the wide interface model assumes that inflowing fresh air mixes instantaneously with the agent–air mixture to form a linear decay of agent concentration from the leading edge o the interface, to the uppermost elevation in the protected enclosure. model used in the standard PN EN 15004-1:2008 [2]; c) model with continuous mixing (fig. 3) – The inflowing air dilutes the mixture evenly - model used in PN EN 15004-1:2008 and NFPA 2001:2012, provided that the occurrence of forced mixing of the gases in the protected enclosure, such as air conditioners. For the analysis carried out in the article is selected model with a wide interface used in European standard. Retention time in this model is determined by the equations (3,4). Retention time in PN-EN 15004 [2] is measured from the moment of achievement the throughout the enclosure design concentration to the moment when the extinguishant concentration at 10% or 50% or 90 % of the enclosure height is less then 85% of the design concentration. The retention time shall be not less than 10 min. The density of gases depends on temperature and pressure of according to the equation (6). Air contains another factor – humidity, according to the equation (5). The density of the mixture of air-agent is determined by the formula (7). The difference between the density of the air surrounding the protected enclosure ρ0 and density of air-agent mixture inside the room affects the length of the retention time ρm according to equation (3). Two cases were analyzed: c) protected room located inside the building and its walls bordering spaces with similar parameters of air, d) walls of protected room are walls of building; air parameters inside and outside significantly different. For these cases, the following extreme conditions: c) climatic conditions inside and outside the same temperature: 18-26 oC, actual pressure 868-1050 hPa, humidity 40-60 %. d) climatic conditions inside: temperature: 18-26 oC, actual pressure 868-1050 hPa, humidity 40-60 %; climatic condi-tions inside: temperature -35 do 35 oC, actual pressure 868-1050 hPa, humidity 0 – 100 % The results of calculations for the climatic conditions in which the density difference reaches the highest values are pre-sented in Tables 3 i 4. In order to determine the effect of climatic conditions on the length of the retention time of the calculations were performed according to the model with a wide interface. Assumed a room with a capacity of 70 m3, height 2,8 m. Assumed leakage area 377 cm2 (n = 0,2191; k1 = 0,0374). Retention times were calculated for each agent assuming normative conditions and the most adverse climatic conditions. The results are shown in Table 5. Extinguishing gases with a density similar to air density reached the longest retention times in the group of analyzed gases (fig. 4). Retention time, gas consisting of 92% N2 and 8% Ar was ca. 5 times longer than halocarbon and over 2-times then Nitrogen. Under adverse climatic conditions that may occur inside the building and are identical in a protected space, and outdoor the room, retention time is changing (fig. 5). Retention time of Novec 1230, FM200 and Argonit was slightly shortened 1-2% (fig. 6). In case of Nitrogen was slightly longer - about 1%. The most significant changes (shortening by about 45%) concerned a mixture of 92%N2-8%Ar, which has density similar to the density of air in normative conditions. Under adverse climatic conditions that may exist between the protected space and the outside of the building, the density difference ρm - ρ0 reaches higher values. Despite this, the retention times of gases with high densities (FM200, Novec 1230) were slightly reduced, about 3% (fig. 8). The extinguishing gas density was more similar to the density of air, the more significant was the reduction in retention time, reaching almost 80% in the case of a mixture 92%N2-8%Ar (fig. 8).
Źródło:
Zeszyty Naukowe SGSP / Szkoła Główna Służby Pożarniczej; 2013, 3, 47; 196-211
0239-5223
Pojawia się w:
Zeszyty Naukowe SGSP / Szkoła Główna Służby Pożarniczej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ uregulowań unijnych dotyczących postępowania z F-gazami na krajowy rynek urządzeń gaśniczych
Influence of EU regulations concerning handling of f-gases on their use in gas extinguishing systems
Autorzy:
Zbrożek, P.
Kiełbasa, T.
Powiązania:
https://bibliotekanauki.pl/articles/373129.pdf
Data publikacji:
2011
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
chlorowcopochodne węglowodorów
F-gazy
fluoriwane gazy cieplarniane
globalne ocieplenie
GWP
HFC
ograniczenie emisji
operator systemu
perfluorowęglowodory
PFC
urządzenia gaśnicze
wodorofluorowęglowodory
emission reduction
extinguishing devices
F-gases
fluorinated greenhouse gases
global warming
halocarbons
halofluorocarbons
perfluorocarbons
system operator
Opis:
W artykule przedstawiono uregulowania prawne dotyczące F-gazów wykorzystywanych w ochronie przeciwpożarowej. Omówiono stosowanie F-gazów oraz konsekwencje nowych uregulowań dla branży przeciwpożarowej. Zarysowano prognozy rozwoju urządzeń gaśniczych wykorzystujących F-gazy oraz przedstawiono rozwiązania alternatywne.
In the article there are described legal regulations concerning F-gases used in fire protection. F-gases use is discussed together with consequences of new regulations of fire protection industry. Forecasts of development of firefighting devices using F-gases are outlined and alternative solutions are presented.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2011, 1; 105-116
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ kompostowania na ograniczenie emisji metanu ze składowanych odpadów komunalnych
Impact of composting to the limitation of methane emissions from municipal waste landfills
Autorzy:
Myszograj, S.
Kozłowska, K.
Gramza, P.
Powiązania:
https://bibliotekanauki.pl/articles/372648.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
gazy cieplarniane
metan
odpady komunalne
kompostowanie
greenhouse gases
methane
municipal waste
composting
Opis:
Akty prawne dotyczące składowania odpadów wskazują na możliwość osiągnięcia celów związanych z ograniczeniem emisji gazów cieplarnianych, poprzez ujmowanie metanu z bryły składowiska i wyłączenie odpadów ulegających biodegradacji ze strumienia kierowanego do składowania. Biologiczne przetwarzanie tych odpadów na drodze stabilizacji tlenowej powoduje mineralizację biodegradowalnego węgla organicznego do ditlenku wegla, którego potencjał cieplarniany jest 25 razy mniejszy niż metanu. W artykule dokonano symulacji obliczeniowych w zakresie możliwości ograniczenia emisji metanu przez stosowanie kompostowania biodegradowalnych odpadów komunalnych.
The legal acts relating to waste disposal indicate the possibility of achieving the objectives of reducing greenhouse gases, by the recognition of methane from landfills and exclusion of biodegradable waste from the stream directed to the storage. Biological treatment of waste by aerobic stabilization causes the mineralization of the biodegradable organic carbon to carbon dioxide, whose warming potential is 25 times smaller than methane. The article presents a computationally intensive simulations in terms of opportunities to reduce methane emissions by the use composting of biodegradable municipal waste.
Źródło:
Zeszyty Naukowe. Inżynieria Środowiska / Uniwersytet Zielonogórski; 2016, 162 (42); 77-88
1895-7323
Pojawia się w:
Zeszyty Naukowe. Inżynieria Środowiska / Uniwersytet Zielonogórski
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ograniczenie emisji gazów cieplarnianych, a możliwości paliwowe polskiej energetyki
Reducing greenhouse gas emissions in the context of fuels in the Polish power industry
Autorzy:
Karcz, H.
Butmankiewicz, T.
Pędzik, P.
Powiązania:
https://bibliotekanauki.pl/articles/109165.pdf
Data publikacji:
2013
Wydawca:
AXIS MEDIA
Tematy:
gazy cieplarniane
ograniczenie emisji gazów
ograniczenie emisji CO2
biomasa
termiczna utylizacja odpadów
Opis:
Zagadnienia związane z ociepleniem klimatu i ich powiązania z produkcją energii cieplnej jest jednym z kluczowych tematów poruszanych podczas dyskusji energetycznych i paliwowych na terenie całego Świata. Unia Europejska stała się liderem światowym w sprawie ograniczenia emisji gazów cieplarnianych do atmosfery. Baza paliwowa kraju zmusza Polskę do podjęcia zdecydowanej postawy w sprawie przygotowania przez UE zarządzeń limitujących emisję C02 pochodzącego ze spalania węgla i ropy naftowej. Oprócz kroków polityczno-gospodarczych podjętych przez Polskie władze, powinny zostać podjęte szeroko rozumiane kierunki badań i wsparcia finansowego w celu wykorzystania istniejącego w kraju potencjału biomasy pochodzenia roślinnego oraz pochodzącego z odpadów komunalnych. Racjonalne wykorzystanie całej bazy biomasy w kotłach energetycznych może w znacznym stopniu złagodzić krajowe jej niedobory i w znacznym stopniu zmniejszyć wszelkie opłaty Polski z tytułu emisji do atmosfery gazów cieplarnianych.
Issues arising from the climate change as well as their links with thermal energy production have been among the key topics discussed around the world in relation with energy and fuels. The European Union has become the global leader in reducing greenhouse gas emissions to the atmosphere.The national fuel industry demands that Poland take a firm stand on the future EU directives aimed at lowering C02 emissions from the combustion of coal and oil. The political and economic steps taken by the Polish authorities should be accompanied by a broad range of new areas of research and financial support which could be conducive to exploiting the potential of biomass derived from plants and municipal waste. Making reasonable use of the entire biomass base in power boilers can alleviate its shortage in the country, at the same time considerably decreasing the costs of greenhouse gas emissions incurred by Poland.
Źródło:
Piece Przemysłowe & Kotły; 2013, 7-8; 8-20
2082-9833
Pojawia się w:
Piece Przemysłowe & Kotły
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Znaczniki środowiskowe w wodach termalnych niecki podhalańskiej
Environmental tracers in thermal waters of Podhale Basin
Autorzy:
Chowaniec, J.
Duliński, M.
Mochalski, P.
Najman, J.
Śliwka, J.
Zuber, A.
Powiązania:
https://bibliotekanauki.pl/articles/2074700.pdf
Data publikacji:
2009
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
niecka popdhalańska
wody termalne
wiek wody
gazy szlachetne
Podhale basin
thermal waters
water age
noble gases
Opis:
Tritium and stable isotope data delta exp.18 O and delta exp.2H) for wells near the recharge area of the thermal system of the Podhale Basin indicate the presence of modern waters recharged at the lowest altitudes of the outcrops of water bearing formations. In turn, delta exp.18O and delta exp.2H values obtained for deep part of the basin may be interpreted as either the result of a high altitude recharge or a cold climate. Helium contents are in general unusually high but can not be interpreted quantitatively at the present stage of the study. The noble gas temperatures (NGT) values obtained from Ne and Ar data disagree with temperatures deduced from the known dependence of air temperature on altitude and altitudes of recharge areas found from the stable isotope data. High concentrations ofHe (ca. 10-4 cm3STP/g), and low NGT deduced from Ne and Ar concentrations suggest the presence of pre-Holocene water in the northeastern part of the basin, which means slow movement of water. Stable isotope and exp.14C data indicate the presence of much younger Holocene waters in the western part of the basin.
Źródło:
Przegląd Geologiczny; 2009, 57, 8; 685--693
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies