Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "evolutionary methods" wg kryterium: Wszystkie pola


Tytuł:
A hybrid evolutionary algorithm of optimized controller placement in SDN environment
Autorzy:
Hemagowri, J.
Tamil Selvan, P.
Powiązania:
https://bibliotekanauki.pl/articles/38704829.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
controller
software defined network
Gaussian chaotic map
fish swarm
multi-criteria optimization
kontroler
sieć zdefiniowana programowo
mapa chaosu Gaussa
rój ryb
optymalizacja wielokryterialna
Opis:
Controller placement problem (CPP) is a significant technological challenge in software defined network (SDN). Deployment of a properly designed SDN-based network is required to detect optimal number of controllers for enhancing the network’s performance. However, the best possible controller placement for enhancing the network’s performance faces many issues. To solve the CPP, a novel technique called the hybrid evolutionary algorithm of optimized controller placement (HEA-OCP) in SDN environment is introduced to increase network’s performance by different network topologies. In the proposed model, optimized controller placement using improved multi-objective artificial fish optimization is employed to improve data transmission and reduce latency. Controller placement can be determined using an undirected graph based on a variety of factors, including propagation delay, load balancing capabilities and bandwidth, fault tolerance and data transfer rate, and a variety of other factors. For each controller, the fitness value is calculated over multi-criteria functions. The optimizer’s performance can be improved with the use of Gaussian chaotic maps. In large-scale SDN networks using HEC-OCP, the algorithm dynamically analyzes the optimal number of controllers and the best connections between switches and controllers. As a result, the overall network performance is improved and the delay minimization-based controller placement strategy is obtained. The simulation of HEA-OCP with existing methods is conducted by a network topology dataset of various metrics, namely packet delivery ratio, packet drop rate, throughput, average latency, and jitter. The proposed HEA-OCP improves the packet delivery and throughput with reduced average latency, and packet drop ensures more instantaneous communications in real-time applications of SDN for better decision-making.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 4; 539-556
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid method for solving timetabling problems based on the evolutionary approach
Autorzy:
Norberciak, M.
Powiązania:
https://bibliotekanauki.pl/articles/1943262.pdf
Data publikacji:
2007
Wydawca:
Politechnika Gdańska
Tematy:
evolutionary algorithms
hybrid methods
time-table
Opis:
Timetabling problems are often difficult and time-consuming to solve. Most of the methods of solving these problems are limited to one problem instance or class. This paper describes a universal method for solving large, highly constrained timetabling problems in various domains. The solution is based on an evolutionary algorithm framework and employs tabu search to quicken the solution finding process. Hyper-heuristics are used to establish the algorithm's operating parameters. The method has been used to solve three timetabling problems with promising results of extensive experiments.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2007, 11, 1-2; 137-149
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aktualne tendencje w opisie i modelowaniu matematycznym procesów przeróbki materiałów uziarnionych
Actual tendencies in description and mathematical modeling of mineral processing
Autorzy:
Tumidajski, T.
Powiązania:
https://bibliotekanauki.pl/articles/216101.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
przeróbka surowców
matematyczne modelowanie
programowanie ewolucyjne
nieklasyczne metody statystyczne
kruszarka szczękowa
mineral processing
mathematical modeling
evolutionary programming
non-classical statistical methods
jaw crushers
Opis:
Wiele konwencjonalnych metod i technik modelowania matematycznego ma ograniczone zastosowania w odniesieniu do układów przeróbki surowców mineralnych, a uzyskiwane modele mają specjalne cechy i ograniczenia. Masowe zastosowanie komputerów doprowadziło do tego, że klasyczne problemy projektowania i poszukiwanie optymalnych warunków stały się zadaniem z zakresu informatyki i odpowiednich procedur obliczeniowych. W artykule omówiono dość szeroko zastosowanie programowania ewolucyjnego do doboru optymalnych warunków pracy kruszarek szczękowych (wzory (1), (2) i (3)), prowadzące do projektów układów rozdrabniania. W wielu przypadkach wskazane jest stosowanie nieklasycznych (niestandardowych) metod statystycznych, z których omówiono metody bootstrapowe, metody bayesowskie i nieparametryczne sposoby estymacji gęstości rozkładów właściwości materiałów uziarnionych. Zostało także ogólnie scharakteryzowane wielowymiarowe podejście do opisu właściwości materiałów, ze zwróceniem uwagi na ich specyfikę.
Many conventional methods and mathematical modeling techniques are limited in mineral processing systems applications giving the models of special features and limitations. The global applications lead to the situation where the classical designing tasks and searching for the optimal conditions became the problems from the field of informatics and certain calculating procedures. The paper presents widely the applications of evolutionary programming to select the optimal conditions for jaw crushers work (formulas (1), (2) and (3)), leading to designs of comminution technological systems. In many cases the application of non-classical statistical methods, like bootstrap, Bayesian and non-parametric methods of estimation of grained materials characteristics distribution functions is advisable. These methods were discussed in the paper. Furthermore, the multidimensional approach to the materials characteristics was generally presented, with special attention to their specific character.
Źródło:
Gospodarka Surowcami Mineralnymi; 2010, 26, 3; 111-123
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aliens and dragons: purposefully-framed play and non-standard learning methods in teaching evolutionary processes to primary school pupils
Autorzy:
Antczak, Mateusz
Powiązania:
https://bibliotekanauki.pl/articles/2204375.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Tematy:
non-formal education
biological education
palaeontological education
geoeducation
edukacja nieformalna
edukacja
geoedukacja
Opis:
Evolutionary processes lie at the base of the entire observable biodiversity, both at present and in the geological past (i.e., in the fossil record). For this reason, the teaching of evolution should receive more recognition than it currently has (e.g., in Poland) and become accurately applied from the early formal education stages onwards. To test the possibility of effective teaching of evolution to primary school pupils, workshops using non-standard learning methods (‘purposefully-framed play’) were organised during childrens’ university (UNIKIDS) courses of one-hour sessions for 33 groups, comprising several to 20 participants, aged 7 to 12. The final task for all participants was to predict future evolutionary processes by creating new species adapted to given environmental factors. Pupils effectively completed this task, but a few misconceptions also become clear. These workshop scenarios suggest that evolution can be taught effectively at least in extracurricular settings to primary school pupils, but for a detailed insight, a quantitative analysis and application of such scenarios in school programmes should be tested in future.
Źródło:
Geologos; 2023, 29, 1; 51--58
1426-8981
2080-6574
Pojawia się w:
Geologos
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of modification of the evolutionary algorithm for sequencing production tasks
Autorzy:
Ciepliński, Piotr
Golak, Sławomir
Wieczorek, Tadeusz
Powiązania:
https://bibliotekanauki.pl/articles/29520067.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
evolutionary algorithm
task sequencing
mutation operator
algorytm ewolucyjny
operator mutacji
Opis:
Evolutionary algorithms are one of the heuristic techniques used to solve task sequencing problems. An important example of such a problem is the issue of sequencing production tasks. The combinatorial optimization of task sequences allows the minimization of the cost or time of a set of production tasks by reducing the components of these values which are present in the transitions between tasks. This paper aims to analyze the influence of the production nature expressed by a set of production task parameters and a definition of the task transition cost on the effectiveness of the modification of the evolutionary algorithm based on new directed stochastic mutation operators. The research carried out included the influence of the space dimension of the task parameters, the number of levels of the value of the cost function, and a definition of this function. The results obtained allow us to assess the effectiveness of the directed mutation in task sequencing for productions of various natures.
Źródło:
Computer Methods in Materials Science; 2022, 22, 3; 157-166
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application evolutionary methods in the location and choice of winf farms
Zastosowanie metod ewolucyjnych w doborze lokalizacji farm wiatrowych
Autorzy:
Gryniewicz-Jaworska, M.
Powiązania:
https://bibliotekanauki.pl/articles/793325.pdf
Data publikacji:
2015
Wydawca:
Komisja Motoryzacji i Energetyki Rolnictwa
Źródło:
Teka Komisji Motoryzacji i Energetyki Rolnictwa; 2015, 15, 1
1641-7739
Pojawia się w:
Teka Komisji Motoryzacji i Energetyki Rolnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Approximation of phenol concentration using novel hybrid computational intelligence methods
Autorzy:
Pławiak, P.
Tadeusiewicz, R.
Powiązania:
https://bibliotekanauki.pl/articles/907935.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
soft computing
neural network
genetic algorithm
fuzzy system
evolutionary neural system
pattern recognition
chemometrics
przetwarzanie miękkie
sieć neuronowa
algorytm genetyczny
system rozmyty
rozpoznawanie obrazu
chemometria
Opis:
This paper presents two innovative evolutionary-neural systems based on feed-forward and recurrent neural networks used for quantitative analysis. These systems have been applied for approximation of phenol concentration. Their performance was compared against the conventional methods of artificial intelligence (artificial neural networks, fuzzy logic and genetic algorithms). The proposed systems are a combination of data preprocessing methods, genetic algorithms and the Levenberg–Marquardt (LM) algorithm used for learning feed forward and recurrent neural networks. The initial weights and biases of neural networks chosen by the use of a genetic algorithm are then tuned with an LM algorithm. The evaluation is made on the basis of accuracy and complexity criteria. The main advantage of proposed systems is the elimination of random selection of the network weights and biases, resulting in increased efficiency of the systems.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 1; 165-181
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bainite transformation time model optimization for Austempered Ductile Iron with the use of heuristic algorithms
Autorzy:
Olejarczyk-Wożeńska, Izabela
Opaliński, Andrzej
Mrzygłód, Barbara
Regulski, Krzysztof
Kurowski, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/29520068.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
heuristic optimization
bainite
ADI
Particle Swarm Optimization
Evolutionary Optimization Algorithm
Opis:
The paper presents the application of heuristic optimization methods in identifying the parameters of a model for bainite transformation time in ADI (Austempered Ductile Iron). Two algorithms were selected for parameter optimization – Particle Swarm Optimization and Evolutionary Optimization Algorithm. The assumption of the optimization process was to obtain the smallest normalized mean square error (objective function) between the time calculated on the basis of the identified parameters and the time derived from the experiment. As part of the research, an analysis was also made in terms of the effectiveness of selected methods, and the best optimization strategies for the problem to be solved were selected on their basis.
Źródło:
Computer Methods in Materials Science; 2022, 22, 3; 125-136
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biologically inspired methods for control of evolutionary algorithms
Autorzy:
Stańczak, J.
Powiązania:
https://bibliotekanauki.pl/articles/206262.pdf
Data publikacji:
2003
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
algorytm genetyczny
adaptacja
adaptacyjny algorytm ewolucyjny
genetic algorithms
adaptation
adaptive ewolutionary algorithms
Opis:
In this paper two methods for evolutionary algorithm control are proposed. The first one is a new method of tuning tlie probabilities of genetic operators. It is assumed in the presented approach that every member of the optimized population conducts his own ranking of genetic operators' qualities. This ranking enables computing the probabilities of execution of genetic operators. This set of probabilities is a basis of experience of every individual and according to this basis the individual chooses the operator in every iteration of the algorithm. Due to this experience one can maximize the chances of his offspring to survive. The second part of the paper deals with a self-adapting method of selection of individuals to a subsequent generation. Methods of selection applied in the evolutionary algorithms are usually inspired by nature and prefer solutions where the main role is played by randomness, competition and struggle among individuals. In the case of evolutionary algorithms, where populations of individuals are usually small, this causes a premature convergence to local minima. In order to avoid this drawback I propose to apply an approach based rather on an agricultural technique. Two new methods of object selection are proposed: a histogram selection and a mixed selection. The methods described were tested using examples based on scheduling and TSP.
Źródło:
Control and Cybernetics; 2003, 32, 2; 411-433
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification and detection of skin disease based on machine learning and image processing evolutionary models
Autorzy:
Bordoloi, Dibyahash
Singh, Vijay
Kaliyaperumal, Karthikeyan
Ritonga, Mahyudin
Jawarneh, Malik
Kassanuk, Thanwamas
Quiñonez-Choquecota, Jose
Powiązania:
https://bibliotekanauki.pl/articles/38700501.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
skin disorder
machine learning
classification
image enhancement
image segmentation
disease detection
schorzenie skóry
nauczanie maszynowe
klasyfikacja
ulepszenie obrazu
segmentacja obrazów
wykrywanie choroby
Opis:
Skin disorders, a prevalent cause of illnesses, may be identified by studying their physical structure and history of the condition. Currently, skin diseases are diagnosed using invasive procedures such as clinical examination and histology. The examinations are quite effective and beneficial. This paper describes an evolutionary model for skin disease classification and detection based on machine learning and image processing. This model integrates image preprocessing, image augmentation, segmentation, and machine learning algorithms. The experimental investigation makes use of a dermatology data set. The model employs the machine learning methods: the support vector machine (SVM), the k-nearest neighbors (KNN), and random forest algorithms for image categorization and detection. This suggested methodology is beneficial for the accurate identification of skin disease using image analysis. The SVM algorithm achieved an accuracy of 98.8%. The KNN algorithm achieved a sensitivity of 91%. The specificity of KNN was 99%.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 2; 247-256
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Combining Rough Sets and Neural Network Approaches in Pattern Recognition
Autorzy:
Cyran, K.
Powiązania:
https://bibliotekanauki.pl/articles/92799.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
pattern recognition
neural networks
rough sets
hybrid methods
evolutionary optimization
holographic ring-wedge detector
Opis:
The paper focuses on problems which arise when two different types of AI methods are combined in one design. The first type is rule based, rough set methodology operating is highly discretized attribute space. The discretization is a consequence of the granular nature of knowledge representation in the theory of rough sets. The second type is neural network working in continuous space. Problems of combining these different types of knowledge processing are illustrated in a system used for recognition of diffraction patterns. The feature extraction is performed with the use of holographic ring wedge detector, generating the continuous feature space. No doubt, this is a feature space natural for application of the neural network. However, the criterion of optimization of the feature extractor uses rough set based knowledge representation. This latter, requires the discretization of conditional attributes generating the feature space. The novel enhanced method of optimization of holographic ring wedge detector is proposed, as a result of modification of indiscernibility relation in the theory of rough sets.
Źródło:
Studia Informatica : systems and information technology; 2005, 2(6); 7-20
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Concepts and models of nonlinear economic dynamics
Koncepcje i modele dynamiki gospodarczej
Autorzy:
Khromyak, J.
Slyusarchuk, Yu.
Tsymbal, L.
Tsymbal, V.M.
Powiązania:
https://bibliotekanauki.pl/articles/547768.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Rzeszowski. Wydawnictwo Uniwersytetu Rzeszowskiego
Tematy:
metody asymptotyczne
dynamika gospodarcza
ekonomia ewolucyjna
nieliniowe modele ekonomiczne
synergia
asymptotic methods
economic dynamics
evolutionary economics
nonlinear models of economics
 synergetics
Opis:
Economic development which occurs under conditions of instability and uncertainty give rise to the possibility of diverse ways of its further elaboration. Therefore, the need for determination of the effective alternative of economic development and its business units in the current environment and in the future is updated on the basis of the concept of evolutionary economics and nonlinear modelling of economic dynamics methodology. The proposed approaches to the modelling of economic dynamics are interrelated with co-evolutionary processes, which are associated with economic integration, and possible forecasts as to quantitative parameters of a closed economy. The article is devoted to the development of the theory of economic dynamics by means of nonlinear modelling impact on production and general economic dynamics of the human development factors and stable economic growth.
Rozwój gospodarczy odbywa się w warunkach niestabilności i niepewności, co określa możliwości różnych sposobów jego dalszego rozwoju. Dlatego aktualna jest potrzeba w zdefiniowaniu racjonalnego wariantu rozwoju gospodarczego jej, jednostek biznesowych tak w obecnej sytuacji, jak i w przyszłości – na podstawie koncepcji ekonomii ewolucyjnej i metodologii modelowania nieliniowego dynamiki gospodarczej. Te podejścia do modelowania dynamiki gospodarczej dotyczą ewolucyjnych procesów związanych z integracją gospodarczą i możliwych prognoz dotyczących ilościowych parametrów rozwoju gospodarki zamkniętej. Artykuł jest poświęcony teorii dynamiki gospodarczej za pomocą modelowania nieliniowego wpływu na produkcję i teorii ogólnej dynamiki czynników rozwoju społecznego oraz trwałego wzrostu gospodarczego.
Źródło:
Nierówności Społeczne a Wzrost Gospodarczy; 2013, 36; 341-352
1898-5084
2658-0780
Pojawia się w:
Nierówności Społeczne a Wzrost Gospodarczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Decoupled homogenization of hyperelastic composite with carbon black inclusion
Niesprzężona homogenizacja kompozytu hipersprężystego z wtrąceniami sadzy
Autorzy:
Poręba-Sebastjan, Martyna
Kuś, Wacław
Powiązania:
https://bibliotekanauki.pl/articles/29520284.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
decoupled homogenization
evolutionary algorithm
composite
hyperelastic material
homogenizacja
algorytm ewolucyjny
złożony
materiał hiperelastyczny
Opis:
The goal of the paper is to present the application of decoupled homogenization method to the modeling of hyperelastic composite with inclusions. The method presented in the paper is illustrated by numerical analysis of a trunk door seal. The decoupled homogenization method was used to find macroscale properties of hyperelastic material. The method allows for the determination of the equivalent properties of a composite material based on its structure and the results of numerical experiments. Unlike the coupled method, the results are not transferred in every iteration between scales during computations which leads to lower calculation costs. The analyzed micro model consisted of a hyperelastic matrix and stiff inclusions in the form of spheres of carbon black material. The decoupled procedure uses evolutionary algorithm to obtain macro model material properties. The finite element method is used during analyses of micro scale models.
Celem pracy było zastosowanie metody homogenizacji niesprzężonej do modelowania hipersprężystego kompozytu z wtrąceniami. Metodę przedstawioną w pracy ilustruje analiza numeryczna uszczelki drzwi. Metodę homogenizacji niesprzężonej zastosowano w celu określenia makroskopowych właściwości materiału hipersprężystego. Metoda pozwala wyznaczyć równoważne właściwości materiału kompozytowego na podstawie jego struktury i wyników eksperymentów numerycznych prowadzonych w skali mikro. W przeciwieństwie do metody sprzężonej wyniki nie są przenoszone w każdej iteracji między skalami, co prowadzi do obniżenia kosztów obliczeń. Analizowany mikro model składał się z osnowy z materiału hipersprężystego oraz sztywnych wtrąceń sadzy. Metoda niesprzężona wykorzystuje algorytm ewolucyjny, aby uzyskać właściwości materiału makro. Do analiz numerycznych użyto metody elementów skończonych.
Źródło:
Computer Methods in Materials Science; 2020, 20, 1; 14-21
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evolutionary algorithm inspired by the methods of quantum computer sciences for the improvement of a neural model of the electric power exchange
Autorzy:
Tchórzewski, J.
Ruciński, D.
Powiązania:
https://bibliotekanauki.pl/articles/94729.pdf
Data publikacji:
2017
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
Artificial Neural Network
Matlab language
modelling
quantum computation
Polish Power Exchange
day ahead market
Opis:
The work contains results of research on the possibility to improve the neural model of the Electric Power Exchange (polish: Towarowa Giełda Energii Elektrycznej – TGEE) in MATLAB and Simulink environment using evolutionary algorithm inspired by quantum computer science. The developed artificial neural network was trained using data for the Day Ahead Market, assuming the joint volume of supplied and sold electrical energy [MWh] as the input quantities in each hour of the 24-hour day, and average prices [PLN/MWh] as output quantities. The obtained model of the exchange system was improved using the evolutionary algorithm, and further improvement in the accuracy of the model by supplementing the evolutionary algorithm using quantum solutions, related to the initial population, crossover and mutation operators, selection, etc. were proposed.
Źródło:
Information Systems in Management; 2017, 6, 4; 343-355
2084-5537
2544-1728
Pojawia się w:
Information Systems in Management
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evolutionary data driven modelling and many objective optimization of non linear noisy data in the blast furnace iron making process
Autorzy:
Mahanta, Bashista Kumar
Chakraborti, Nirupam
Powiązania:
https://bibliotekanauki.pl/articles/29520226.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
deep learning
reference vector
neural net
genetic programming
blast furnace
Opis:
Optimization of process parameters in modern blast furnace operation, where both control and accessing large data set with multiple variables and objectives is a challenging task. To handle such non-linear and noisy data set deep learning techniques have been used in recent time. In this study an evolutionary deep neural network algorithm (EvoDN2) has been applied to derive a data driven model for blast furnace. The optimal front generated from deep neural network is compared against the optimal models developed from bi-objective genetic programming algorithm (BioGP) and evolutionary neural network (EvoNN). The optimization process is applied to all the training models by using constraint based reference vector evolutionary algorithm (cRVEA).
Źródło:
Computer Methods in Materials Science; 2021, 21, 3; 163-175
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies