Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "data censoring" wg kryterium: Wszystkie pola


Wyświetlanie 1-6 z 6
Tytuł:
Data censoring with set-membership affine projection algorithm
Autorzy:
Karamali, Gholamreza
Zardadi, Akram
Moradi, Hamid Reza
Powiązania:
https://bibliotekanauki.pl/articles/305734.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
adaptive filtering
machine learning
data censoring
big data
Opis:
In this work, we use the single-threshold and double-threshold set-membership affine projection algorithm to censor non-informative and irrelevant data in big data problems. For this purpose, we employ the probability distribution function of the additive noise in the desired signal and the excess of the meansquared error (EMSE) in steady-state to evaluate the threshold parameter of the single -threshold set-membership affine projection (ST-SM-AP) algorithm intending to obtain the desired update percentage. In addition, we propose the double-threshold set-membership affine projection (DT-SM-AP) algorithm to detect very large errors caused by unrelated data (such as outliers). The DT-SM-AP algorithm is capable of censoring non-informative and unrelated data in big data problems, and it will promote the misalignment and convergence speed of the learning procedure with low computational complexity. The synthetic examples and real-life experiments substantiate the superior performance of the proposed algorithms as compared to traditional algorithms.
Źródło:
Computer Science; 2020, 21 (1); 43-57
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie rozkładów uciętych i cenzurowanych w kwantyfikacji ryzyka operacyjnego. Badania symulacyjne
The application of truncated and censored distributions in the quantification of operational risk
Autorzy:
Szkutnik, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/592084.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Cenzurowanie danych
LDA
Ryzyko operacyjne
Ucinanie danych
Data censoring
Data truncation
Operational risk
Opis:
W badaniu rozpatrzone zostały różne sposoby rejestrowania zdarzeń, takie jak ucinanie i cenzurowanie danych wraz z oceną wpływu, jaki mogą wywierać na wielkość ryzyka szacowanego metodą LDA. Ignorowanie faktycznego ucinania danych w procesie ich rejestracji lub przyjmowanie faktu ucinania jako kompromisu pomiędzy jakością informacji a kosztami ich ewidencji zostały porównane z procesem rejestracji opartym na cenzurowaniu danych. Cenzurowanie pozwala na uzyskanie pełnej informacji o częstości zdarzeń oraz daje możliwość wykorzystania tych częściowych informacji w procesie estymacji. Estymacja parametrów na podstawie danych cenzurowanych, wykorzystywana w innych obszarach, może być jednym z kierunków rozwoju w przypadku ryzyka operacyjnego w instytucjach finansowych.
The study consider different ways to register processes such as truncation and censoring of data together with the impact they may have on LDA method. Ignorance of factual truncation of data in the process of their registration or acceptance of the fact of their being truncated as a compromise between the quality of information and the cost of their record were compared with the registration process based on the censorship of information. Censoring of data allows one to get complete information about the frequency of events as well as to implement this partial information further in the process of parameter estimation. Estimation of parameters on the basis of data censoring, may be one of the directions of development also in the case of operational risk in financial institutions.
Źródło:
Studia Ekonomiczne; 2016, 264; 109-134
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bayesian modelling for semi-competing risks data in the presence of censoring
Autorzy:
Bhattacharjee, Atanu
Dey, Rajashree
Powiązania:
https://bibliotekanauki.pl/articles/20312017.pdf
Data publikacji:
2023-06-13
Wydawca:
Główny Urząd Statystyczny
Tematy:
censoring
illness-death models
accelerated failure time model
Bayesian Survival Analysis
semi-competing risks
Opis:
In biomedical research, challenges to working with multiple events are often observed while dealing with time-to-event data. Studies on prolonged survival duration are prone to having numerous possibilities. In studies on prolonged survival, patients might die of other causes. Sometimes in the survival studies, patients experienced some events (e.g. cancer relapse) before dying within the study period. In this context, the semi-competing risks framework was found useful. Similarly, the prolonged duration of follow-up studies is also affected by censored observation, especially interval censoring, and right censoring. Some conventional approaches work with time-to-event data, like the Cox-proportional hazard model. However, the accelerated failure time (AFT) model is more effective than the Cox model because it overcomes the proportionality hazard assumption. We also observed covariates impacting the time-to-event data measured as the categorical format. No established method currently exists for fitting an AFT model that incorporates categorical covariates, multiple events, and censored observations simultaneously. This work is dedicated to overcoming the existing challenges by the applications of R programming and data illustration. We arrived at a conclusion that the developed methods are suitable to run and easy to implement in R software. The selection of covariates in the AFT model can be evaluated using model selection criteria such as the Deviance Information Criteria (DIC) and Log-pseudo marginal likelihood (LPML). Various extensions of the AFT model, such as AFT-DPM and AFT-LN, have been demonstrated. The final model was selected based on minimum DIC values and larger LPML values.
Źródło:
Statistics in Transition new series; 2023, 24, 3; 201-211
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unbiased Estimation of Survival Probabilities for Censored Data with Known Censoring Times
Nieobciążona estymacja prawdopodobieństw przeżycia w modelu z obserwowalnymi czasami cenzurowania
Autorzy:
Rossa, Agnieszka
Powiązania:
https://bibliotekanauki.pl/articles/904687.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
survival analysis
censored data
non-parametric estimation
Reduced-Sample Estimator
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2005, 194
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Single Functional Index Quantile Regression for Independent Functional Data Under Right-Censoring
Regresja kwantylowa pojedynczego wskaźnika funkcjonalnego dla niezależnych danych funkcjonalnych z cenzurowaniem prawostronnym
Autorzy:
Hamri, Mohamed Mehdi
Mekki, Sanaà Dounya
Rabhi, Abbes
Kadiri, Nadia
Powiązania:
https://bibliotekanauki.pl/articles/2045982.pdf
Data publikacji:
2022
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
censored data
functional data
kernel estimator
normality
non-parametric estimation
small ball probability
dane cenzurowane
estymator jądrowy
normalność
estymacja nieparametryczna
prawdopodobieństwo small ball
Opis:
The main objective of this paper was to estimate non-parametrically the quantiles of a conditional distribution based on the single-index model in the censorship model when the sample is considered as independent and identically distributed (i.i.d.) random variables. First of all, a kernel type estimator for the conditional cumulative distribution function (cond-cdf) is introduced. Then the paper gives an estimation of the quantiles by inverting this estimated cond-cdf, the asymptotic properties are stated when the observations are linked with a single-index structure. Finally, a simulation study was carried out to evaluate the performance of this estimate.
Głównym celem artykułu jest prezentacja nieparametrycznej estymacji kwantyli rozkładu warunkowego na podstawie modelu jednoindeksowego w modelu cenzury, gdy próba jest traktowana jako niezależne zmienne losowe o identycznym rozkładzie. Przede wszystkim wprowadzono estymator jądrowy dla funkcji skumulowanego rozkładu warunkowego (cond-cdf). Następnie podano oszacowanie kwantyli przez odwrócenie oszacowanego cond-cdf. Właściwości asymptotyczne są określane, gdy obserwacje są połączone ze strukturą jednoindeksową. Na koniec przeprowadzono badanie symulacyjne, aby ocenić skuteczność tego oszacowania.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2022, 1; 31-62
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalised Lindley shared additive frailty regression model for bivariate survival data
Autorzy:
Pandey, Arvind
Hanagal, David D.
Tyagi, Shikhar
Powiązania:
https://bibliotekanauki.pl/articles/2156991.pdf
Data publikacji:
2022-12-15
Wydawca:
Główny Urząd Statystyczny
Tematy:
Bayesian estimation
frailty
generalised Lindley frailty
generalised log-logistic distribution
generalised Weibull distribution
hazard rate
MCMC
random censoring
Opis:
Frailty models are the possible choice to counter the problem of the unobserved heterogeneity in individual risks of disease and death. Based on earlier studies, shared frailty models can be utilised in the analysis of bivariate data related to survival times (e.g. matched pairs experiments, twin or family data). In this article, we assume that frailty acts additively to the hazard rate. A new class of shared frailty models based on generalised Lindley distribution is established. By assuming generalised Weibull and generalised log-logistic baseline distributions, we propose a new class of shared frailty models based on the additive hazard rate. We estimate the parameters in these frailty models and use the Bayesian paradigm of the Markov Chain Monte Carlo (MCMC) technique. Model selection criteria have been applied for the comparison of models. We analyse kidney infection data and suggest the best model.
Źródło:
Statistics in Transition new series; 2022, 23, 4; 161-176
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies