Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "convex optimization approach" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Robust H∞ control for a class of uncertain neutral systems with both state and control input time-varying delays via a unified LMI optimization approach
Autorzy:
Chen, J. D.
Yang, C. D.
Lin, K. J.
Lien, C. H.
Powiązania:
https://bibliotekanauki.pl/articles/970609.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
robust H[infinity] control
neutral systems
unified LMI approach
convex optimization approach
delay-dependent criterion
Opis:
The robust H∞ control problem is considered for a class of uncertain neutral system involving both state and control input time-varying delays. The uncertainties under consideration are nonlinear time-varying parameter perturbations. The methodology is based on the Lyapunov functional combined with a unified LMI approach, and a new delay-dependent criterion is proposed to guarantee the stabilization and disturbance attenuation of systems. Moreover, a convex optimization approach is used to solve the robust H∞ control disturbance attenuation problem. Finally, a numerical example is illustrated to show the validity of this paper. The simulation results reveal significant improvement over the recent results.
Źródło:
Control and Cybernetics; 2008, 37, 3; 517-530
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid PSO approach for solving non-convex optimization problems
Autorzy:
Ganesan, T.
Vasant, P.
Elamvazuthy, I.
Powiązania:
https://bibliotekanauki.pl/articles/229756.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Kuhn-Tucker conditions (KT)
non-convex optimization
particle swarm optimization (PSO)
semi-classical particle swarm optimization (SPSO)
Opis:
The aim of this paper is to propose an improved particle swarm optimization (PSO) procedure for non-convex optimization problems. This approach embeds classical methods which are the Kuhn-Tucker (KT) conditions and the Hessian matrix into the fitness function. This generates a semi-classical PSO algorithm (SPSO). The classical component improves the PSO method in terms of its capacity to search for optimal solutions in non-convex scenarios. In this work, the development and the testing of the refined the SPSO algorithm was carried out. The SPSO algorithm was tested against two engineering design problems which were; ‘optimization of the design of a pressure vessel’ (P1) and the ‘optimization of the design of a tension/compression spring’ (P2). The computational performance of the SPSO algorithm was then compared against the modified particle swarm optimization (PSO) algorithm of previous work on the same engineering problems. Comparative studies and analysis were then carried out based on the optimized results. It was observed that the SPSO provides a better minimum with a higher quality constraint satisfaction as compared to the PSO approach in the previous work.
Źródło:
Archives of Control Sciences; 2012, 22, 1; 87-105
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fast edge detection approach based on global optimization convex model and Split Bregman algorithm
Autorzy:
Jing, Y.
Liu, J.
Liu, Z.
Cao, H.
Powiązania:
https://bibliotekanauki.pl/articles/329158.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
edge detection
active contour
global optimization
numerical minimization
split Bregman algorithm
detekcja krawędzi
kontur aktywny
optymalizacja globalna
algorytm Bregmana
Opis:
Active contour model is a typical and effective closed edge detection algorithm, which has been widely applied in remote sensing image processing. Since the variety of the image data source, the complexity of the application background and the limitations of edge detection, the robustness and universality of active contour model are greatly reduced in the practical application of edge extraction. This study presented a fast edge detection approach based on global optimization convex model and Split Bregman algorithm. Firstly, the proposed approach defined a generalized convex function variational model which incorporated the RSF model’s principle and Chan’s global optimization idea and could get the global optimal solution. Secondly, a fast numerical minimization scheme based on split Bregman iterative algorithm is employed for overcoming drawbacks of noise and others. Finally, the curve evolves to the target boundaries quickly and accurately. The approach was applied in real special sea ice SAR images and synthetic images with noise, fuzzy boundaries and intensity inhomogeneity, and the experiment results showed that the proposed approach had a better performance than the edge detection methods based on the GMAC model and RSF model. The validity and robustness of the proposed approach were also verified.
Źródło:
Diagnostyka; 2018, 19, 2; 23-29
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies