Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "bang-bang" wg kryterium: Wszystkie pola


Tytuł:
The orders of the reductions of a point in the Mordell-Weil group of an elliptic curve
Autorzy:
Cheon, J.
Hahn, S.
Powiązania:
https://bibliotekanauki.pl/articles/1390534.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Bang's theorem
elliptic curves
reductions
local heights
Źródło:
Acta Arithmetica; 1999, 88, 3; 219-111
0065-1036
Pojawia się w:
Acta Arithmetica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optical Beams in Nonlocal Nonlinear Media
Autorzy:
Królikowski, W.
Bang, O.
Wyller, J.
Rasmussen, J. J.
Powiązania:
https://bibliotekanauki.pl/articles/2035663.pdf
Data publikacji:
2003
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
42.65.Tg
42.65.Jx
Opis:
We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.
Źródło:
Acta Physica Polonica A; 2003, 103, 2-3; 133-147
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Second order optimality conditions for bang-bang control problems
Autorzy:
Maurer, H.
Osmolovskii, N. P.
Powiązania:
https://bibliotekanauki.pl/articles/970524.pdf
Data publikacji:
2003
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
sterowanie przekaźnikowe
bang-bang control
second order necessary and sufficient conditions
critical cone
transformation of quadratic forms
numerical verification of second order conditions
van der Pol oscillator
Opis:
Second order necessary and sufficient optimality conditions for bang-bang control problems have been studied in Milyutin, Osmolovskii (1998). These conditions amount to testing the positive (semi-)definiteness of a quadratic form on a critical cone. The assumptions are appropriate for numerical verification only in some special cases. In this paper, we study various transformations of the quadratic form and the critical cone which will be tailored to different types of control problems in practice. In particular, by means of a solution to a linear matrix differential equation, the quadratic form can be converted to perfect squares. We demonstrate by three practical examples that the conditions obtained can be verified numerically.
Źródło:
Control and Cybernetics; 2003, 32, 3; 555-584
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimality and sensitivity for semilinear bang-bang type optimal control problems
Autorzy:
Felgenhauer, U.
Powiązania:
https://bibliotekanauki.pl/articles/907953.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie optymalne
struktura roztworu
warunki optymalności
bang-bang control
optimality conditions
sensitivity differentials
solution structure
stability in optimal control
strong local optima
Opis:
In optimal control problems with quadratic terminal cost functionals and systems dynamics linear with respect to control, the solution often has a bang-bang character. Our aim is to investigate structural solution stability when the problem data are subject to perturbations. Throughout the paper, we assume that the problem has a (possibly local) optimum such that the control is piecewise constant and almost everywhere takes extremal values. The points of discontinuity are the switching points. In particular, we will exclude the so-called singular control arcs, see Assumptions 1 and 2, Section 2. It is known from the results by Agrachev et al. (2002) stating that regularity assumptions, together with a certain strict second-order condition for the optimization problem formulated in switching points, are sufficient for strong local optimality of a state-control solution pair. This finite-dimensional problem is analyzed in Section 3 and optimality conditions are formulated (Lemma 2). Using well-known results concerning solution sensitivity for mathematical programs in Rn (Fiacco, 1983) one may further conclude that, under parameter changes in the problem data, the switching points will change Lipschitz continuously. The last section completes these qualitative statements by calculating sensitivity differentials (Theorem 2, Lemma 6). The method requires a simultaneous solution of certain linearized multipoint boundary value problems.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2004, 14, 4; 447-454
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bang-bang controls in the singular perturbations limit
Autorzy:
Artstein, Z.
Powiązania:
https://bibliotekanauki.pl/articles/970546.pdf
Data publikacji:
2005
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
zaburzenia osobliwe
miara Younga
bang-bang
singular perturbations
Young measures
Opis:
A general form of the dynamics obtained as a limit of trajectories of singularly perturbed linear control systems is presented. The limit trajectories are described in terms of probability measure-valued maps. This allows to determine the extent to which the bang-bang principle for linear control systems is carried over to the singular limit.
Źródło:
Control and Cybernetics; 2005, 34, 3; 645-663
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Equivalence of second order optimality conditions for bang-bang control problems. Part 1: Main results
Autorzy:
Osmolovskii, N. P.
Maurer, H.
Powiązania:
https://bibliotekanauki.pl/articles/970559.pdf
Data publikacji:
2005
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
sterowanie przekaźnikowe
stożek krytyczny
forma kwadratowa i równoważność
bang-bang control
second order necessary and sufficient conditions
critical cone
Opis:
Second order optimality conditions have been derived in the literature in two different forms. Osmolovskii (1988a, 1995, 2000, 2004) obtained second order necessary and sufficient conditions requiring that, a certain quadratic form be positive (semi)-definite on a critical cone. Agrachev, Stefani, Zezza (2002) first, reduced the bang-bang control problem to finite-dimensional optimization and then show that well-known sufficient optimality conditions for this optimization problem supplemented by the strict bang-bang property furnish sufficient conditions for the bang-bang control problem. In this paper, we establish the equivalence of both forms of sufficient conditions and give explicit relations between corresponding Lagrange multipliers and elements of critical cones. Part 1 summarizes the main results while detailed proofs will be given in Part 2.
Źródło:
Control and Cybernetics; 2005, 34, 3; 927-950
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Error analysis of discrete approximations to bang-bang optimal control problems: the linear case
Autorzy:
Veliov, V. M.
Powiązania:
https://bibliotekanauki.pl/articles/970563.pdf
Data publikacji:
2005
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
liniowy system sterowania
aproksymacja dyskretna
szacowanie błędów
linear control systems
discrete approximations
error estimates
Opis:
The paper presents an error estimate for Runge-Kutta direct discretizations of terminal optimal control problems for linear systems. The optimal control for such problems is typically discontinuous, and Lipschitz stability of the solution with respect to perturbations does not necessarily hold. The estimate (in terms of the optimal controls) is of first order if certain recently obtained sufficient conditions for structural stability hold, and of fractional order, otherwise. The main tool in the proof is the established relation between the local convexity index of the reachable set and the multiplicity of zeros of appropriate switching functions associated with the problem.
Źródło:
Control and Cybernetics; 2005, 34, 3; 967-982
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies