- Tytuł:
-
Atroposelektywna synteza naturalnych chiralnych osiowo związków biarylowych. Część 1
Atroposelective synthesis of natural axially chiral biaryl compounds. Part 1 - Autorzy:
-
Kołodziejska, R.
Tafelska-Kaczmarek, A.
Studzińska, R. - Powiązania:
- https://bibliotekanauki.pl/articles/171903.pdf
- Data publikacji:
- 2017
- Wydawca:
- Polskie Towarzystwo Chemiczne
- Tematy:
-
naturalne chiralne osiowo związki biarylowe
mostkowane biaryle
otwarto-łańcuchowe biaryle
atropoizomeryzacja
atroposelektywna synteza
chiralne osiowo biaryle
natural axially chiral biaryl compounds
bridged biaryls
unbridged biaryls
atropoisomerization
atroposelective synthesis
axially chiral biaryls - Opis:
- In early twentieth century, it was already known that chemical compounds might be chiral without containing the chiral atoms. The presence of the stereogenic center is a sufficient but not necessary condition that the molecule appears in two forms which are mirror images. In certain cases, the limit of free rotation in the molecule may result in asymmetry, e.g. inhibition of rotation around single bond leads to axial isomers. This is the kind of conformational isomerism, which according to the nomenclature is called atropisomerism [1, 2]. The most often optically active molecules without stereogenic atoms, possessing an axial chirality are biaryls, which are commonly found in nature. In most cases, pharmacological activity of biaryls is associated with the presence of axial chirality (Figs 1, 2; Scheme 1) [1–14]. Generally chiral biaryls are divided into bridged biaryls (Scheme 4–6) [15–24], and biaryls, which do not contain the additional ring (Scheme 2, 3) [25–33]. The thermal stability of both enantiomeric/diastereomeric forms is an essential precondition for atropisomerism. For a given temperature, conformationally stable isomers may coexist when their a half-life is at least 1000 s, which gives the minimum energy barrier of 93 kJ mol–1 at 300 K. Chiral biaryls can be achieved by either desymmetrization of stable but achiral biaryls by modifying one of the groups on the aromatic moiety (Scheme 7–9) [1, 34, 35], or by dynamic kinetic resolution of racemic mixtures of the conformationally unstable chiral substrates. The synthesis of the chirally stable biaryls from the chiral labile substrates is most frequently the result of the extra substituent addition (Scheme 10) [36], and formation or cleavage of a bridge (Scheme 11–16) [37–54]. The axially chiral biaryls can also be obtained in the atroposelective transformation of the alkyl substituent of the arene ring into a second aromatic ring in the presence of an organometallic catalyst (Scheme 17, 18) [55, 56].
- Źródło:
-
Wiadomości Chemiczne; 2017, 71, 3-4; 177-197
0043-5104
2300-0295 - Pojawia się w:
- Wiadomości Chemiczne
- Dostawca treści:
- Biblioteka Nauki