Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "analytic cut" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Semantical Proof of Subformula Property for the Modal Logics K4.3, KD4.3, and S4.3
Autorzy:
Yazaki, Daishi
Powiązania:
https://bibliotekanauki.pl/articles/750044.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
modal logic
analytic cut
subformula property
finite model property
Opis:
The main purpose of this paper is to give alternative proofs of syntactical and semantical properties, i.e. the subformula property and the nite model property, of the sequent calculi for the modal logics K4.3, KD4.3, and S4.3. The application of the inference rules is said to be acceptable, if all the formulas in the upper sequents are subformula of the formulas in lower sequent. For some modal logics, Takano analyzed the relationships between the acceptable inference rules and semantical properties by constructing models. By using these relationships, he showed Kripke completeness and subformula property. However, his method is difficult to apply to inference rules for the sequent calculi for K4.3, KD4.3, and S4.3. Lookinglosely at Takano's proof, we nd that his method can be modied to construct nite models based on the sequent calculus for K4.3, if the calculus has (cut) and all the applications of the inference rules are acceptable. Similarly, we can apply our results to the calculi for KD4.3 and S4.3. This leads not only to Kripke completeness and subformula property, but also to finite model property of these logics simultaneously.
Źródło:
Bulletin of the Section of Logic; 2019, 48, 4
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytic Non-Labelled Proof-Systems for Hybrid Logic: Overview and a couple of striking facts
Autorzy:
Braüner, Torben
Powiązania:
https://bibliotekanauki.pl/articles/2142755.pdf
Data publikacji:
2022-01-07
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
hybrid logic
natural deduction systems
sequent systems
normalization
cut-elimination
analycity
Opis:
This paper is about non-labelled proof-systems for hybrid logic, that is, proofsystems where arbitrary formulas can occur, not just satisfaction statements. We give an overview of such proof-systems, focusing on analytic systems: Natural deduction systems, Gentzen sequent systems and tableau systems. We point out major results and we discuss a couple of striking facts, in particular that nonlabelled hybrid-logical natural deduction systems are analytic, but this is not proved in the usual way via step-by-step normalization of derivations.
Źródło:
Bulletin of the Section of Logic; 2022, 51, 2; 143-162
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies