Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "algebraic number" wg kryterium: Wszystkie pola


Tytuł:
Three algebraic number systems based on the q-addition with applications
Autorzy:
Ernst, Thomas
Powiązania:
https://bibliotekanauki.pl/articles/2078940.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
q-real numbers
q-rational numbers
q-integers
q-trigonometric functions
biring
semiring
Opis:
In the spirit of our earlier articles on $q-\omega$ special functions, the purpose of this article is to present many new \(q\)-number systems, which are based on the \(q\)-addition, which was introduced in our previous articles and books. First, we repeat the concept biring, in order to prepare for the introduction of the \(q\)-integers, which extend the \(q\)-natural numbers from our previous book. We formally introduce a \(q\)-logarithm for the \(q\)-exponential function for later use. In order to find \(q\)-analogues of the corresponding formulas for the generating functions and \(q\)-trigonometric functions, we also introduce \(q\)-rational numbers. Then the so-called \(q\)-real numbers \(\mathbb{R}_{\oplus_{q}}\), with a norm, a \(q\)-deformed real line, and with three inequalities, are defined. The purpose of the more general \(q\)-real numbers \(\mathbb{R}_{q}\) is to allow the other \(q\)-addition too. The closely related JHC \(q\)-real numbers \(\mathbb{R}_{\boxplus_{q}}\) have applications to several \(q\)-Euler integrals. This brings us to a vector version of the \(q\)-binomial theorem from a previous paper, which is associated with a special case of the \(q\)-Lauricella function. New \(q\)-trigonometric function formulas are given to show the application of this umbral calculus. Then, some equalities between \(q\)-trigonometric zeros and extreme values are proved. Finally, formulas and graphs for \(q\)-hyperbolic functions are shown.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2021, 75, 2; 46-71
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On double covers of the generalized alternating group $ℤ_d ≀ _m$ as Galois groups over algebraic number fields
Autorzy:
Epkenhans, Martin
Powiązania:
https://bibliotekanauki.pl/articles/1390852.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
Let $ℤ_d ≀ }_m$ be the generalized alternating group. We prove that all double covers of $ℤ_d ≀ }_m$ occur as Galois groups over any algebraic number field. We further realize some of these double covers as the Galois groups of regular extensions of ℚ(T). If d is odd and m >7, then every central extension of $ℤ_d ≀ }_m$ occurs as the Galois group of a regular extension of ℚ(T). We further improve some of our earlier results concerning double covers of the generalized symmetric group $ℤ_d ≀ _m$.
Źródło:
Acta Arithmetica; 1997, 82, 2; 129-145
0065-1036
Pojawia się w:
Acta Arithmetica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Note on some infinite products for π
Autorzy:
Kahlig, P.
Matkowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/122690.pdf
Data publikacji:
2014
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
infinite product
Wallis-type product
Dido functional equation
Dido sequence
algebraic number
transcendental number
constructible number
produkt nieskończony
liczba algebraiczna
liczba przestępna
Opis:
After a brief review of (slowly converging) Wallis-type infinite products for π , (faster converging), Dido-type infinite products for π are treated. The notion of “alternating products” facilitates error checking.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2014, 13, 2; 43-50
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On two-primary algebraic K-theory of quadratic number rings with focus on K₂
Autorzy:
Crainic, Marius
Østvær, Paul
Powiązania:
https://bibliotekanauki.pl/articles/1390644.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
algebraic K-groups of quadratic number rings
2- and 4-rank formulas for Picard groups
étale cohomology
Źródło:
Acta Arithmetica; 1998-1999, 87, 3; 223-243
0065-1036
Pojawia się w:
Acta Arithmetica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Year Five Pupils’ Number Sense and Algebraic Thinking: the Mediating Role of Symbol and Pattern Sense
Autorzy:
Somasundram, Piriya
Akmar, Sharifah Norul
Eu, Leong Kwan
Powiązania:
https://bibliotekanauki.pl/articles/1967800.pdf
Data publikacji:
2019-03-31
Wydawca:
Wydawnictwo Adam Marszałek
Tematy:
early algebra
generalisation
patterns
sense making
symbols
Opis:
This study mainly focused on the relationship between number sense and algebraic thinking. Previous studies have provided evidence that number sense plays an important role in developing algebraic thinking. The role of symbol and pattern sense are yet to discover in relation to number sense and algebraic thinking. The purpose of this study was to identify the mediating effects of symbol sense and pattern sense in year five pupils’ relationship between number sense and algebraic thinking. To do so, two mathematics tests were carried out among 720 year five pupils in the district of Malacca, Malaysia. The collected data were analysed using a partial least squares-structural equation modeling approach. The data collected were analysed using SPSS 22.0 and SmartPLS 3.0. Results demonstrated that symbol sense and pattern sense are good mediators between year five pupils’ number sense and algebraic thinking. This result of the study supports the past studies related to the role of number sense, symbol and pattern sense in developing algebraic thinking. The presented study provides suggestions as intervention to increase students’ making sense ability in numbers, symbols and patterns to develop algebraic thinking.
Źródło:
The New Educational Review; 2019, 55; 100-111
1732-6729
Pojawia się w:
The New Educational Review
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies