Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Zaïmi, Toufik" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Caractérisation d'un ensemble généralisant l'ensemble des nombres de Pisot
Autorzy:
Zaïmi, Toufik
Powiązania:
https://bibliotekanauki.pl/articles/1390652.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
1. Introduction. Soient K un corps de nombres et θ un entier algébrique de module > 1 et de polynôme minimal Irr(θ,K,z) sur K. Alors θ est dit K-nombre de Pisot si pour tout plongement σ de K dans ℂ le polynôme σIrr(θ,K,z) possède une unique racine de module > 1 et aucune racine de module 1. Ces nombres ont été définis par A. M. Bergé et J. Martinet [2]. Comme dans [2], on représente un K-nombre de Pisot θ dans l'algèbre $A = ℝ^{r₁} × ℂ^{r₂}$, où (r₁,r₂) désigne la signature du corps K, par la suite $(θ_σ)_σ$ de ses conjugués de module > 1 et on note $S_K$ leur ensemble dans A. D'après le théorème 1 de [7], l'ensemble $S_K$ est fermé dans A seulement lorsque K = ℚ ou bien K = ℚ(√d) où d ∈ ℤ¯. On peut espérer obtenir dans A un ensemble fermé d'entiers algébriques généralisant l'ensemble $S_ℚ$ en rajoutant aux éléments de $S_K$ les points limites suivant la preuve du théorème 1 de [7] et l'on obtient alors un ensemble $Σ_K$ qu'on peut définir comme étant l'ensemble des entiers algébriques θ de module > 1 tels que pour tout plongement σ le polynôme σIrr(θ,K,z) admet au plus une racine de module > 1 et aucune racine de module 1. L'ensemble $Σ_K$ coïncide avec l'ensemble $S_K$ seulement lorsque K = ℚ ou bien K = ℚ(√d) où d < 0 et dans ces cas il est fermé. On donne ici une caractérisation de cet ensemble.
Źródło:
Acta Arithmetica; 1998-1999, 87, 2; 141-144
0065-1036
Pojawia się w:
Acta Arithmetica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies