Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Western Tethys" wg kryterium: Wszystkie pola


Tytuł:
Unraveling the collisional history of the Western Carpathians through deep geophysical sounding
Autorzy:
Soni, Tanishka
Schiffer, Chrystian
Mazur, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/24202097.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Carpathians
Tethys
terranes
Opis:
The ALpine-CArpathian-PAnnonian (ALCAPA) block is one of the terranes involved in the Alpine-Tethys suture along with the North European Plate. In the Western Carpathians, this suture is supposed to be represented by the Pieniny Klippen Belt (PKB) which is a few kilometres wide and about 600 km long unit between the Outer Western Carpathians (OWC) and Central Western Carpathians (CWC) (Plašienka et al., 1997; Schmid et al., 2008). Unlike the Neotethian suture in the Western Carpathians, the PKB does not show the typical characteristics of a suture. The PKB is a sub-vertical unit with mainly shallow marine limestone and flysch deposits in a conspicuous “blockin-matrix” structure (Plašienka et al., 1997). The presence of “exotic” sediments in the PKB and the southernmost units of the OWC along with their shallow marine deposition environment led to the theory proposing the presence of a continental sliver called the Czorsztyn Ridge in the Alpine Tethys, dividing it into two oceanic/marine basins: the Magura Ocean to the north and the Vahic Ocean to the south (Plašienka, 2018). This controversial continental fragment possibly forming the basement for PKB successions, and its structural relationship with the adjoining OWC and CWC units, make it the main target of this project. The objective is to find evidence of the presence of this continental block, the Czorsztyn Ridge, which may have subducted along with the Vahic oceanic lithosphere underneath the CWC (Schmid et al., 2008). A passive seismic experiment will provide insight into the deep lithospheric structure across the PKP, testing the presence of a tectonic suture along with relaminated remnants of the Czorsztyn Ridge, and potential remnants of subducted or underthrusted lithosphere. Eighteen broadband stations have been deployed in a ~N-S transect (Fig. 1a) under the umbrella of the AdriaArray initiative, cutting across the PKB and Neotethian Meliata suture to the south. The data obtained during up to three years will complement 10 other permanent and temporary broadband stations, forming an approximate 370 km long profile and will be used to perform receiver function analysis and build structural and velocity models of the lithosphere (i.e., Schiffer, 2014; Schiffer et al., 2023) beneath the Western Carpathians. The horizontal extent of the imaging is shown in Figure 1b.
Źródło:
Geotourism / Geoturystyka; 2023, 1-2 (72-73); 65--66
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The siliciclastics/carbonates shift in the Jurassic of the Western Caucasus (central northern Neo-Tethys): reconsidering research over the last 50 years
Autorzy:
Ruban, Dmitry A.
Powiązania:
https://bibliotekanauki.pl/articles/94635.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Tematy:
carbonate platform
geoscience tradition
Mountainous Adygeya
Middle Jurassic
regional stratigraphy
platforma węglanowa
tradycja geonauki
górzysta Adygeja
Jura środkowa
stratygrafia regionalna
Opis:
A chain of carbonate platforms evolved in the northern Neo-Tethys during the Late Jurassic, but current knowledge remains incomplete as long as data from several larger regions, such as the Western Caucasus, are not included. In order to fill this gap, it is here suggested to reconsider the information accumulated chiefly during Soviet times. Although these data are too general, they still matter with regard to some regional characteristics and tentative interpretations. Available data on the spatio-temporal distribution of Bajocian-Callovian sedimentary rocks are summarised in a novel way which permits documentation of depositional trends at six representative localities in the Western Caucasus. The extent of the carbonate platform increased at two localities since the Late Callovian and at a third since the Middle Oxfordian. Three additional sites were characterised either by non-deposition or deep-marine sedimentation. The onset of carbonate platform development marked a remarkable shift from chiefly siliciclastic to carbonate deposition, although this event was not sudden everywhere. The Bathonian pulse of tectonic activity, coupled with the eustatic sea level rise, allowed shelves to expand during the Callovian-Oxfordian, with a reduction in siliciclastic input from islands and seawater that became well oxygenated and warmer. These conditions were conducive to biogenic carbonate production, allowing the carbonate platform to expand subsequently.
Źródło:
Geologos; 2019, 25, 2; 153-162
1426-8981
2080-6574
Pojawia się w:
Geologos
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The middle to Late Eocene evolution of nummulitid foraminifer Heterostegina in the Western Tethys
Autorzy:
Less, G
Ozcan, E.
Papazzoni, C.A.
Stockar, R.
Powiązania:
https://bibliotekanauki.pl/articles/21939.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Instytut Paleobiologii PAN
Tematy:
biometry
Heterostegina
nummulitid foraminifer
paleontology
Foraminifera
stratigraphy
Eocene
evolution
Late Eocene
Western Tethys
Nummulitidae
Opis:
Megalospheric forms of Western Tethyan late Bartonian to late Priabonian involute Heterostegina from numerous localities, marking different ecological conditions, were morphometrically investigated. They belong to three species, H. armenica, H. reticulata, and H. gracilis based on the presence/absence of granulation, on the chamberlet characteristics and on the relative size of proloculus. Within these species a very rapid evolution could be observed in the reduction of the number of operculinid chambers, in the increase of the number of chamberlets and partially in the increase of the proloculus size. This evolution is demonstrated by stratigraphic superpositions in several localities (especially in the Mossano section), and is supported also by the change of co−occurring fossils, starting with the disappearance of large−sized Nummulites, then followed by the appearance of the genus Spiroclypeus and then by the disappearance of orthophragmines of middle Eocene acme. Based on the reduction of operculinid chambers, two chronosubspecies of Heterostegina armenica and seven of H. reticulata are defined biometrically (four of them: H. armenica tigrisensis, H. reticulata tronensis, H. r. hungarica, and H. r. mossanensis are introduced here). This allows to subdivide the Shallow Benthic Zone (SBZ) 18 into three and SBZ 19 into two subzones. The extremely rapid evolution of H. reticulata allows to calibrate larger foraminiferal events around the middle/late Eocene boundary. The extinction of large−sizedNummulitesseems to be heterochronous in the late Bartonian in having migrated eastward, while the first appearance of Spiroclypeus is shown to be synchronous at the base of the Priabonian. The middle/upper Eocene (= Bartonian/Priabonian) boundary is to be placed at the base of the Priabona marls in the Mossano section corresponding to the SBZ 18/19 limit, to the first appearance of genus Spiroclypeus, to that of Nummulites fabianii and of Heterostegina reticulata mossanensis. It falls into the upper part of both the P 15 and NP 18 planktic zones. The Western Tethyan Eocene involute Heterostegina became extinct, apparently with no Oligocene successors.
Źródło:
Acta Palaeontologica Polonica; 2008, 53, 2
0567-7920
Pojawia się w:
Acta Palaeontologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Late Eocene evolution of nummulitid foraminifer Spiroclypeus in the Western Tethys
Autorzy:
Less, G
Ozcan, E.
Powiązania:
https://bibliotekanauki.pl/articles/21784.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Instytut Paleobiologii PAN
Tematy:
biometry
nummulitid foraminifer
paleontology
Foraminifera
stratigraphy
Spiroclypeus
Eocene
evolution
Late Eocene
Western Tethys
Nummulitidae
Opis:
Megalospheric forms of Priabonian Spiroclypeus of the Western Tethys were morphometrically investigated. Based on the reduction of the average number of undivided, post−embryonic chambers, the investigated populations are grouped into two successive, phylogenetically linked species, S. sirottii sp. nov. and S. carpaticus. The evolution is also demonstrated by the increase of the number of secondary chamberlets in particular chambers, by the increase of the diameter of the first two whorls and by that of the size of the proloculus, although the latter turned out to be also ecologically controlled. This evolution is supported by the stratigraphic succession of populations in the Mossano section (N Italy) and by the change of accompanying fossils. Lacking in upper Bartonian beds, the first appearance of genus Spiroclypeus seems to be synchronous with the beginning of the late Eocene. The newly described S. sirottii is associated with Heterostegina reticulata mossanensis and orthophragmines containing forms of middle Eocene acme, both marking the lower part of the Priabonian. Meanwhile S. carpaticus co−occurs with H. gracilis and/or with orthophragmines characteristic of the upper part of the Priabonian. We suppose that the Spiroclypeus sirottii–carpaticus lineage is restricted to the Priabonian. Thus, Spiroclypeus sirottii is a zonal marker for the Shallow Benthic Zone (SBZ) 19 (early Priabonian) while S. carpaticusindicates the SBZ 20 (late Priabonian).
Źródło:
Acta Palaeontologica Polonica; 2008, 53, 2
0567-7920
Pojawia się w:
Acta Palaeontologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tectono-sedimentary evolution of the junction area between the Western and Eastern Carpathian nappe systems (Ukrainian Carpathians)
Autorzy:
Hnylko, Oleh
Powiązania:
https://bibliotekanauki.pl/articles/24202114.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Carpathians
Ukraine
Tethys
Opis:
The Carpathians contain the remains of the Western Tethys, the main of which are: continental/microcontinental fragments (Alkapa and Tisza-Dacia terranes) of the Tethys Ocean, now located in the Central (Inner) Carpathians, and (palaeo)accretionary prisms, building mainly the Outer Carpathians. The Ukrainian Carpathians occupy the junction where the Western Carpathian and Eastern Carpathian nappe systems converged. In the presented work, author try to reconstruct the tectono-sedimentary evolution of the Eastern and Western Carpathian nappe systems in the junction area on the basis of own and published geomapping works, stratigraphic, sedimentological and structural research using existing restorations (see van Hinsbergen et al., 2020 and references therein). The Central Western Carpathian nappes (part of the Alcapa Terrane) are not exposed in Ukraine and probably buried under Neogene Transcarpathian Depression. The Central Eastern Carpathian nappes (part of the Tisza-Dacia Terraine) are represented in Ukraine by the Marmarosh thick-skinned basement nappes, that were formed in the Early Cretaceous time and overlapped by the latest Early Cretaceous–Paleogene post-nappe sedimentary cover. Between the Central Eastern and Central Western Carpathian nappe systems, the Pieniny Klippen Belt suture zone and Monastyrets Nappe filled with Paleogene flysch are developed. The structure of the junction between the Outer Eastern and Outer Western Carpathian nappe systems is more complicated. In Ukraine, the Outer Carpathians are made up of a several stacked nappes filled with Cretaceous–Neogene, mainly flysch sediments uprooted from their original substratum. In the Eastern Carpathian segment of Tethys at the Late Jurassic and/or Early Cretaceous, Ceahlau-Severin ocean (called Fore-Marmarosh one in Ukraine) was opened between the Dacia continental block (part of the Tisza-Dacia Terrane) and the Eurasian continent (van Hinsbergen et al., 2020 and references therein), that suggested by rift oceanic and continental basalts occurring under the Cretaceous flysch of the Outer Eastern Carpathian. Sinking of the Dacia (micro)continent into a subduction zone existed in the Neotethys ocean and inclined to the west (van Hinsbergen et al., 2020), could have caused the east-directed thrusting of the thick-skinned Marmarosh Nappes towards the CeahlauSeverin ocean. Ahead the Marmarosh nappe pile, the Eastern Carpathian Internal flysch thin-skinned nappes such as the Kamyanyi Potik, Rahiv, Burkut, Krasnoshora, Svydovets and Chornohora ones were formed. Coarsening upward and regular younging of the stratigraphic successions from inner to outer nappes suggest their attribution to the accretionary wedge growed in the Early Cretaceous–Paleogene time due to the subduction of the Outer Carpathian flysch basin basement under the Marmarosh pile. In the Western Carpathian segment, the Pieniny Klippen Belt accretionary wedge began to rise in the Late Cretaceous due to subduction of the Penninic oceanic domain under the Central Western Carpathians (part of the Alcapa Terrane) accompanied by detaching and grouping together originally very distant lithofacies (Plašienka, 2018 and references therein). The Western Carpathian Internal flysch nappes such as the Magura and Dukla units were attached to the Fore-Alcapa prism during the Middle Eocene–Oligocene, accordantly to outward shifting and uplifting of the trench-like Magura and Krosno lithofacies during this time. Closuring of the Monastyrets “between-terrainian” flysch basin at the late Eocene suggests the collision of the Alcapa and Tisza–Dacia terranes at the turn the Eocene and Oligocene. As a result, the Fore-Alcapa and Fore-Tisza-Dacia wedges were incorporated within an amalgamated internal wedge system that limited from the SW the Outer Carpathian basin. This unificated Menilite–Krosno basin was gradually uplifted and its deposits were subsequently thrusted as the external Silesian, Skyba and Boryslav-Pokyttya nappes onto the Miocene Carpathian Foredeep. Sedimentological and structural data suggest northeastward shift/migration of the wedge front–trench/foredeep– forebulge during Carpathian evolution. In addition, the junction of the Eastern and Western Carpathian accretionary wedges is complicated by strike-sleep movements.
Źródło:
Geotourism / Geoturystyka; 2023, 1-2 (72-73); 25--26
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reappraisal of the Changning-Menglian Belt as a Suture Zone for the Tethys in Western Yunnan, China: Late Paleozoic faunal and sedimentary evidence
Autorzy:
Huang, Hao
Zeng, Jianbing
Jin, Xiaochi
Powiązania:
https://bibliotekanauki.pl/articles/24202111.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Tethys
China
Paleozoic
Opis:
The Changning-Menglian Belt in western Yunnan, China has long been considered a major Tethyan suture in SE Asia, based mainly on fragmented Paleozoic ophiolites, slices of Devonian-Triassic radiolarian cherts and possible seamount limestones of Permo-Carboniferous age (Fig. 1). However, some students also argued for a setting of passive continental margin for this belt and a cryptic suture further east representing the vanished Tethyan Ocean (Ridd, 2015). To evaluate this hypothesis, we have been studying late Paleozoic strata and fusulinids in this belt for years. We recently collected late Carboniferous to Middle Permian fusulinids from various sections in this belt, including ascendingly Triticites assemblage, Sphaeroschwagerina sphaerica assemblage, Eoparafusulina assemblage, Chalaroschwagerina solita assemblage and Neoschwagerina assemblage. Further comparison reveals that the fusulinid taxonomy in this belt still differs from that in S China. For instance, the Early Permian fusulinids in this belt generally lack Pseudoschwagerina, a typical Cathaysian element. Moreover, quantitative analysis (Rarefaction) confirms that the generic diversity in this belt remains lower than in S China. These results supports that a substantial portion of the Permo-Carboniferous limestones in this belt originated from seamounts located far from the northern Gondwana margin, meanwhile slightly south of the equatorial region, also considering the couplet of carbonates and underlying basalts (OIB type). Furthermore, petrographic and geochemical analyses of the Carboniferous siliciclastic Nanduan Formation demonstrate a mature continental provenance and two peaks of detrital zircon ages (ca. 950 Ma and ca. 550 Ma) (Zheng et al., 2019). Notably, these two peaks are also shared by metasedimentary rocks (e.g., the Ximeng and Lancang Groups) widespread in this belt as well as peri-Gondwana blocks. These data suggest that the Paleozoic siliciclastics covering this belt’s eastern and western parts were derived from the Gondwana margin. Therefore, significant siliciclastic inputs from the Gondwana margin over much of this belt contradict the implied vast Paleozoic ocean in this belt. In contrast, the siliciclastic Nanpihe Group (Devonian-early Carboniferous) in the central part demonstrates a detritus source from continental arcs and clusters of detrital zircon ages of ca. 435 Ma and ca. 950 Ma, which correlates well to Silurian magmatism in the Simao and S China blocks. In conclusion, we propose that the Changning-Menglian Belt was part of the passive continental margin on the eastern flank of the Baoshan-Shan Block during the late Paleozoic, while and tectonostratigraphic slices of seamount limestones, Nanpihe Formation or even ophiolites are allochthonous and were displaced to their present position during the Late Triassic closure of the Tethys.
Źródło:
Geotourism / Geoturystyka; 2023, 1-2 (72-73); 27--28
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pliensbachian, Early Jurassic radiolarians from Mount Rettenstein in the Northern Calcareous Alps, Austria
Autorzy:
Cifer, T.
Gorican, S.
Gawlick, H.-J.
Auer, M.
Powiązania:
https://bibliotekanauki.pl/articles/2082123.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Instytut Paleobiologii PAN
Tematy:
Radiolaria
Polycystina
systematics
stratigraphy
Jurassic
Western Tethys
Eastern Alps
Austria
Opis:
One of the best preserved Early Pliensbachian radiolarian assemblages from the Western Tethys is described from the grey marly limestone exposed at Mount Rettenstein in the Northern Calcareous Alps, south of the Dachstein Massif. Fourty-five genera and 71 species are documented and illustrated here. Four species are newly described: Tozerium filzmoosense Cifer sp. nov., Loupanus pliensbachicus Cifer sp. nov., Thurstonia? robusta Cifer sp. nov., and Ares rettensteinensis Cifer sp. nov. Radiolarian age is in accordance with ammonoid data from the overlying red marly limestone, which was assigned to the upper part of the Lower Pliensbachian. The best equivalent for the radiolarian-bearing lithology is the Dürrnberg Formation, characteristic of the open-marine Hallstatt facies zone. Previously published radiolarian data from the Dürrnberg Formation were re-evaluated and the originally proposed age assignments revised. At two localities, the published Hettangian–Sinemurian age was emended to the early Early Pliensbachian that is in accordance with the age of radiolarians from Mount Rettenstein. We compared the studied fauna from Mount Rettenstein also with two other rich radiolarian assemblages, one from another locality in the Dürrnberg Formation and one from the Gümüslü Allochthon in Turkey, which were assigned to the late Early Pliensbachian and are somewhat younger than the assemblages studied herein.
Źródło:
Acta Palaeontologica Polonica; 2020, 65, 1; 167-207
0567-7920
Pojawia się w:
Acta Palaeontologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Middle to Late Jurassic carbonate-biosiliceous sedimentation and palaeoenvironment in the Tethyan Fatricum Domain, Krížna Nappe, Tatra Mts, Western Carpathians
Autorzy:
Jach, Renata
Reháková, Daniela
Powiązania:
https://bibliotekanauki.pl/articles/191204.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Geologiczne
Tematy:
radiolarite
nodular limestone
Fleckenmergel facies
carbonate production crisis
calcite compensation depth
Tethys
Opis:
The Jurassic of the Alpine-Mediterranean Tethys was characterized by the formation of several interconnected basins, which underwent gradual deepening and oceanization. Sedimentation in each basin was influenced by a specific set of interrelated factors, such as tectonic activity, seawater circulation, climate, chemistry and trophic state of seawater as well as evolutionary changes of the marine biota. This paper deals with the Fatricum Domain (Central Carpathians, Poland and Slovakia), which in the Jurassic was a pull-apart basin on a thinned continental crust. The sedimentation history of this domain during the Bajocian-Tithonian and its governing factors have been revealed. Facies analysis of the Bajocian-Oxfordian deposits evidences considerable relief of the basin-floor topography. Deposits in the Western Tatra Mts represent sedimentation on a submarine intrabasinal high, whereas the coeval deposits of the eastern part of the Tatra Mts accumulated in a deeper basin. The basin succession began with Bajocian bioturbated “spotted” limestones and siliciclastic mudstones (Fleckenmergel facies). These were succeeded by uppermost Bajocian - middle Bathonian grey nodular limestones, affected by synsedimentary gravitational bulk creep. The coeval deposits of the intrabasinal high are represented by well-washed Bositra-crinoidal limestones with condensed horizons. Uniform radiolarite sedimentation commenced in the late Bathonian and persisted until the early late Kimmeridgian. The basal ribbon radiolarites (upper Bathonian - lower Oxfordian), which consist of alternating chert beds and shale partings, are a record of seawater eutrophication, a related crisis in carbonate production and the rise of the CCD, which collectively resulted in biosiliceous sedimentation. The overlying calcareous radiolarites (middle Oxfordian - lowermost upper Kimmeridgian) marked a gradual return to carbonate sedimentation. The return of conditions that were favourable for carbonate sedimentation took place in the late Kimmeridgian, when the red nodular limestones were deposited. They are partly replaced by basinal platy limestones (uppermost Kimmeridgian - Tithonian) in the Western Tatra Mts. This lateral variation in facies reflects a change in the sedimentary conditions governed by a bathymetric reversal of the seafloor configuration, attributed to a further stage in the pull-apart transcurrent tectonics of the Fatricum Domain.
Źródło:
Annales Societatis Geologorum Poloniae; 2019, 89, 1; 1-46
0208-9068
Pojawia się w:
Annales Societatis Geologorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mesozoic tectonostratigraphy of the Western Tethys Realm – a review
Autorzy:
Gawlick, Hans-Jürgen
Powiązania:
https://bibliotekanauki.pl/articles/24202113.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
tectonostratigraphy
Tethys
Mesozoic
Opis:
The Mesozoic sedimentary sequences in the Western Tethys Realm are incorporated in different mountain ranges, most of them located in the eastern Mediterranean area (Eastern and Southern Alps; Western, Eastern and Southern Carpathians; Dinarides, Albanides, Hellenides; units in the Pannonian realm: Pelso, Tisza), others are located to the west (e.g. the Apennine and the Betic Cordillera) These mountain ranges were formed since the Jurassic and experienced in parts polyphase mountain building processes and deformation, lasting until today. Therefore, the tectonostratigraphic evolution of the different Wilson cycles are in cases hard to assign to a specific cycle, because the evolution of the different Wilson cycles is overlapping. This resulted in contrasting palaeogeographic reconstructions and controversial regional tectonic interpretations. In general, two different Wilson cycles can be distinguished. The older Wilson cycle reflect the geodynamic history of the Neo-Tethys (Meliata-Hallstatt, Maliac, Vardar, Pindos/Mirdita/Dinaridic oceans in other nomenclature), and the formed orogen is part of the Tethysides with following evolution as documented in the sedimentary record of the wider Adria plate: – A Late Permian to Middle Anisian rift (graben) stadium with sedimentation of siliciclastics and carbonate ramp deposits in an epicontinental sea. – A Middle Anisian to Middle Jurassic passive margin evolution after the late Middle Anisian oceanic break-up: a) The complex Middle to Late Triassic shallow- to deep-water carbonate platform evolution from the inner shelf (platform facies) to the outer shelf (open-marine basinal facies), and b) the Early to Middle Jurassic pelagic platform evolution. – A Middle to Late Jurassic convergent tectonic regime triggered by ophiolite obduction (“active continental margin evolution”) with the interplay of thrusting, trench and trench-like basin formation, mass movements, and the onset and growth of carbonate platforms, followed by latest Jurassic to Early Cretaceous mountain uplift and unroofing. – Final closure of the remaining open part of the NeoTethys (= Vardar Ocean) in Late Cretaceous to Paleogene times. The younger Wilson cycle reflect the geodynamic history of the Alpine Atlantic (Ligurian, Piemont, Pennine, Vah, Alpine Tethys oceans in other nomenclature), and the formed orogen is part of the Alpides with following evolution as documented in the sedimentary record of the wider Adria plate: – An Early Jurassic (Hettangian to Toarcian) rift (graben) stadium with sedimentation of fully marine deposits in areas the rift cross-cut the older proximal Neo-Tethys shelf and siliciclastics and carbonate ramp deposits in areas the rift cross-cut continental domains. – A Middle Jurassic to Late Cretaceous passive margin evolution after the oceanic break-up since the Toarcian with formation of shallow-water platforms in latest Jurassic–earliest Cretaceous times in certain areas, but predominantly with deposition of hemipelagic sedimentary sequences. – ALate Cretaceous to Paleogene convergent tectonic regime triggered by subduction and subsequent continent (wider Adria)  – continent collision (Europe), followed by Neogene mountain uplift and unroofing. In contrast to the fairly well understood Alpine Atlantic Wilson cycle a lot of open questions exist regarding the NeoTethys Wilson cycle. The main focus is therefore the time frame before the “Mid-Cretaceous” mountain building process with the rearrangement of tectonic units, i.e. the Mesozoic plate configuration in the Western Tethys Realm. Due to the fact that the “Mid-Cretaceous” and younger polyphase tectonic motions and block rotations draws a veil over the older Mesozoic plate configuration, several crucial and still topical questions remain, e.g.: 1) How many Triassic-Jurassic oceans existed in the Western Tethyan Realm. Show these oceanic domains different life cycles, i.e. is the opening and the closure of these oceanic domains contemporaneous or differ their age, and where are the suture zones? In general, two main types of contrasting interpretations/models remain: a) Multi-ocean reconstructions with several oceanic domains between continental blocks, and b) One-ocean reconstruction: an allochthonous model which interprets the ophiolites as overthrust ophiolitic nappe stack (or single ophiolite sheet) from the Neo-Tethys to the southeast to east. 2) Were the Southern Alps/Dinarides/Albanides/Hellenides, the Eastern Alps/Western Carpathians plus some Pannonian units (ALCAPA), some units in the Circum-Pannonian realm (e.g., Tisza Unit), and Pelagonia (including Drina-Ivanjica Unit) independent microplates between independent oceanic domains in Triassic-Jurassic times? Or have these units been scattered by polyphase younger tectonic movements modifying an united continental realm (north-western part of Pangaea) of the Triassic European shelf? The Early Jurassic Pangaea break-up resulted, e.g., in the opening of the Central Atlantic Ocean and its eastward continuation, the Alpine Atlantic.
Źródło:
Geotourism / Geoturystyka; 2023, 1-2 (72-73); 21--22
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Magnetostratigraphy of the Jurassic/Cretaceous boundary interval in the Western Tethys and its correlations with other regions: a review
Autorzy:
Grabowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/2061000.pdf
Data publikacji:
2011
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
magnetostratigraphy
Tithonian
Berriasian
Western Tethys
Opis:
Magnetostratigraphy is an important method in regional and worldwide correlations across the Jurassic/Cretaceous boundary. The M-sequence of magnetic anomalies, embracing this boundary, provides an easily recognizable pattern which might be identified in biostratigraphically calibrated land sections. The polarity chrons between M21r and M16n are well correlated to calpionellid and calcareous nannofossil stratigraphy in the Tethyan Realm. This results in a very high precision of stratigraphic schemes of pelagic carbonates (ammonitico rosso and maiolica limestones), integrating the two groups of fossils with magnetostratigraphy. The main clusters of the reference sections are located in the Southern Alps and Apennines, but the database was recently enriched by sections from the Western Carpathians and Eastern Alps. Quite a few Jurassic/Cretaceous boundary sections with magnetostratigraphy are known in the Iberian Peninsula and south-eastern France but their importance relies on the integration of magnetostratigraphy also with the Tethyan ammonite zonation. Correlation of Boreal and Tethyan regions still remains a major problem. Just two sections with reliable correlation to the global polarity time scale are documented outside Tethys: a shallow marine to non-marine Tithonian–Berriasian–Valanginian sequence in southern England (Portland–Purbeck beds) and the marine clastic Upper Tithonian–Middle Berriasian (= Middle Volgian–lowermost Ryazanian) sequence at Nordvik Peninsula (Siberia). The Volgian/Ryazanian boundary at Nordvik seems to be located in the lower part of magnetochron M18n, while the most commonly accepted definitions of the Tethyan Jurassic/Cretaceous boundary are situated either within magnetochron M19n (A/B calpionellid zonal boundary, Durangites/Jacobi ammonite zonal boundary), or at the boundary of M19n/M18r (Jacobi/Grandis ammonite subzonal boundary).
Źródło:
Volumina Jurassica; 2011, 9, 1; 105-128
1896-7876
1731-3708
Pojawia się w:
Volumina Jurassica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Late Cretaceous - Early Palaeogene sandy-to-gravelly debris flows and their sediments in the Silesian Basin of the Alpine Tethys (Western Outer Carpathians, Istebna Formation)
Autorzy:
Strzeboński, P.
Powiązania:
https://bibliotekanauki.pl/articles/2059835.pdf
Data publikacji:
2015
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
flysch Carpathians
Silesian Nappe
Istebna Formation
deep-water sedimentary environment
sediment gravity flows
debris flows
siliciclastic deposits
debrites
depositional system
apron
Opis:
The study focuses on Upper Cretaceous - Palaeocene deposits from the Beskid Śląski mountain range in southern Poland constituting the Istebna Beds. The Istebna Beds, also referred to as the Istebna Formation, are part of the Silesian tectonic unit, which forms the Outer Carpathian fold-and-thrust belt (part of the Alpine-Carpathian system). The results of qualitative and quantitative lithological-sedimentological studies were the basis for the interpretation of lithofacies types, sedimentary processes and palaeoenvironment as well as for the reconstruction of the architecture of the depositional system. The analysis conducted on the basis of field description of the deposits shows the prevalence (nearly 70%) of siliciclastic strata representing a sandstone-conglomerate association (S-C), which is the main subject of this work. The S-C lithofacies: sandstones, gravelly sandstones, sandy conglomerates and conglomerates constitute the deposits formed mostly by mass gravity-flows such as sandy-to-gravelly debris flows. The distribution of the coarse-clastic material indicates a sediment supply from southerly directions and implies the presence of an active source area in the rear part of the Silesian Basin. A succession of the sandstone-to-conglomerate deposits with the secondary participation of other lithofacies, with a thickness of approximately two thousand metres, indicates temporary increased diastrophic activity in the Silesian Ridge (source area) and the intense denudation of this area. The uplift of the alimentation area and its destruction coinciding with enforced relative regression and the uncovering of the proximal depositional zone of the basin led to resedimentation of the older intrabasinal material and repeated mass deposition together with delivery of extraclasts of pre-existing rocks and minerals. The lithofacies development of the sandstone-to-conglomerate debrites and the related sedimentary palaeotransport directions suggest an accumulation domain in the form of a linear apron depositional system developed in a deep-water setting. Experimental modelling of subaqueous sandy flows has contributed to a better understanding of the complex genesis of deep-water sediment gravity flows developing in depositional systems rich in sand material.
Źródło:
Geological Quarterly; 2015, 59, 1; 195--214
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Larger Benthic Foraminifera from Paleocene–Eocene carbonates, Eastern Tethys, Meghalaya NE India – their comparison with Western Tethys and palaeobiogeographical significance
Autorzy:
Tewari, Vinod Chandra
Powiązania:
https://bibliotekanauki.pl/articles/24202096.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Tethys
India
Himalaya
Opis:
India–Asia plate collision and uplift of the Himalaya took place during Paleocene–Eocene time (50 Ma). The extension of western Tethys Sea from Europe to Asian eastern Tethyan region has been correlated by assemblages of Larger Benthic Foraminifera (LBF). Global correlation and paleobiogeography of the eastern Meghalayan and western Tethyan Sea is discussed on the basis of SBZ of Paleocene– Eocene foraminifera assemblages (Fig. 1). Paleocene–Eocene Lakadong Limestone and Umlatodoh Limestone were deposited in shallow marine carbonate ramp depositional environment in Shillong Plateau, Meghalaya, NE India. The sedimentation basin is part of the Eastern Tethys and LBF and calcareous algae is the major carbonate facies. Coral reefs are not developed in these carbonates in contrast with the western Tethys limestones in Adriatic Platform and western European –Alpine region (Tewari et al., 2007).The LBF and algal assemblage in both the limestones is consistent with other parts of Eastern Tethys in Eastern India and Tibet (Hottinger, 1971; Scheibner & Speijer, 2008, Tewari et al., 2010). The latest Paleocene (Biozone SBZ4) miscellanids and ranikothalids are replaced by Early Eocene alveolinids and nummulitids, which dominates LBF assemblages in the western Tethyan realm at the P-E boundary (Scheibner & Speijer, 2008), Thanetian (SBZ4 Biozone) is equivalent to Tethyan platform stage II (Scheibner & Speijer, 2008). In standard biozones Ilerdian (SBZ5-SBZ6), a general reorganization in LBF communities is recorded with a long life and low reproductive potential (Hottinger, 1971). However, in the Meghalayan LBF assemblages of the lowest Eocene (biozones SBZ5/6) are still dominated by Ranikothalia and Miscellanea, while new LBFs that first emerged within this time interval elsewhere (e.g. Assilina, Alveolina and Discocyclina) are less important and Nummulites are absent. Later, in the Early Eocene there was a gradual diversification of Discocyclina and Assilina species (Fig. 1), while Ranikothalia disappeared and Miscellanea became less important by the end of the SBZ5/6 biozones. Similar LBF assemblages have been recorded in other parts of east Tethys in western India and Tibet (Scheibner & Speijer 2008; Tewari et al., 2010 and references therein). Such LBF assemblages in east Tethys thus differ from west Tethys. Palaeobiogeographical barriers must have existed between India and Eurasia during early collision of Indian Plate with Eurasia Plate around 50 Ma (Tewari et al., 2010 and references therein). These barriers prevented migration of certain LBF species of Nummulites and Alveolina between these two palaeogeographic regions. LBF dominated facies in the other basins of Meghalaya like Umlatodoh Limestone are well developed in low latitude. However, mixed coral-algal reefs and LBF facies were sparse in low-mid latitude carbonate environments (Adriatic Platform of Italy-Slovenia, Oman, Egypt, Libya, NW Somalia; Tewari et al., 2007, 2010; Scheibner & Speijer, 2008 and references therin). In contrast to west Tethys, corals are absent in Eastern Tethys (calcareous algae is present in SBZ3 and SBZ4 Biozone, Fig. 1) in the Meghalaya and other low-latitude eastern Tethys (Scheibner & Speijer, 2008). Carbonate ramp (shallow tidal flat ) carbonate environments were dominated by LBFs from Early to Late Paleocene (SBZ4, SBZ5, biozones; Fig. 1). It is interpreted that the collision of the Indian and Asian plates must have generated this difference in palaeobiodiversity by creating barriers, which prevented migration of certain LBFs (Nummulites) from west to east. Later, in the Early Eocene (SBZ6, SBZ7-SBZ8 biozones), recorded from younger Umlatodoh Limestone in the upper part gradually replaced by LBF dominated facies in the east, with highly diversified LBF species of Nummulites, Discocyclina, Discocylina jauhrii etc.), indicating stable shallow marine environmental conditions. Stable carbon and oxygen isotope analyses from Paleocene–Eocene Lakadong Limestone and Umlatodoh Limestone strongly supports a shallow marine carbonate platform deposition in Eastern Shallow Tethys, Meghalaya, India (Tewari et al., 2010)
Źródło:
Geotourism / Geoturystyka; 2023, 1-2 (72-73); 71--72
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Integrated stratigraphy of the Middle–Upper Jurassic of the Krížna Nappe, Tatra Mountains
Autorzy:
Jach, R.
Djerić, N.
Goričan, Š.
Řeháková, D.
Powiązania:
https://bibliotekanauki.pl/articles/191333.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Geologiczne
Tematy:
carbon and oxygen isotopes
radiolarians
calcareous dinoflagellates
radiolarites
Krizna nappe
Western Carpathians
Tethys
Opis:
Middle-Upper Jurassic pelagic carbonates and radiolarites were studied in the Krížna Nappe of the Tatra Mountains (Central Western Carpathians, southern Poland and northern Slovakia). A carbon isotope stra- tigraphy of these deposits was combined with biostratigraphy, based on radiolarians, calcareous dinoflagellates and calpionellids. In the High Tatra and Belianske Tatra Mountains, the Bajocian and part of the Bathonian are represented by a thick succession of spotted limestones and grey nodular limestones, while in the Western Tatra Mountains by relatively thin Bositra-crinoidal limestones. These deposits are referable to a deeper basin and a pelagic carbonate platform, respectively. The various carbonate facies are followed by deep-water biosiliceous facies, namely radiolarites and radiolarian-bearing limestones of Late Bathonian-early Late Kimmeridgian age. These facies pass into Upper Kimmeridgian-Lower Tithonian pelagic carbonates with abundant Saccocoma sp. The bulk-carbonate isotope composition of the carbonate-siliceous deposits shows positive and negative S C excursions and shifts in the Early Bajocian, Late Bajocian, Early Bathonian, Late Bathonian, Late Callovian, Middle Oxfordian and Late Kimmeridgian. Additionally, the S13C curves studied show a pronounced increasing trend in the Callovian and a steadily decreasing trend in the Oxfordian-Early Tithonian. These correlate with the trends known from the Tethyan region. The onset of Late Bathonian radiolarite sedimenlalion is marked by a decreasing trend in S13C. Increased S13C values in the Late Callovian, Middle Oxfordian and Late Kimmeridgian (Moluccana Zone) correspond with enhanced radiolarian production. A significant increase in CaCO3 content is recorded just above the Late Callovian S13C excursion, which coincides with a transition from green to variegated radiolarites.
Źródło:
Annales Societatis Geologorum Poloniae; 2014, 84, 1; 1-33
0208-9068
Pojawia się w:
Annales Societatis Geologorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Glaucony from the condensed Lower-Middle Jurassic deposits of the Križna Unit, Western Tatra Mountains, Poland
Autorzy:
Jach, R.
Starzec, K.
Powiązania:
https://bibliotekanauki.pl/articles/191514.pdf
Data publikacji:
2003
Wydawca:
Polskie Towarzystwo Geologiczne
Tematy:
High-Al autochthonous glaucony
K-Ar dating
Carpathians
Tethys
Opis:
Lower-Middle Jurassic glaucony-bearing deposits crop out in the Polish part of the Križna Unit in the Western Tatra Mts. These deposits, up to 20 cm thick, consist of glaucony-rich marls and limestones. The glaucony grains constitute up to 30% volume of the deposits. They represent an evolved stage of glauconitization since they contain more than 7% K2O. The content of Al2O3 is high (up to 19.97%, average 16.98%) while the content of Fe2O3 is low (not more than 23.48%, average 12.84%). These features are interpreted as a product of diagenetic processes. The glaucony-bearing deposits were formed at an upper bathyal depth and their rate of deposition was very low, what allowed long-lasting evolution of the glaucony grains. The K-Ar age of the glaucony grains is much younger than the biostratigraphic age of the studied section. The lowering of the K-Ar dates is interpreted as a result of loss of radiogenic Ar from the lattice of the glaucony.
Źródło:
Annales Societatis Geologorum Poloniae; 2003, 73, No 3; 183-192
0208-9068
Pojawia się w:
Annales Societatis Geologorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Foraminifers from the early basin of the Polish Outer Carpathians: relationship with the Western and Eastern Tethys (Tithonian)
Autorzy:
Szydło, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/24202099.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Polish Outer Carpathians
Tethys
foraminifers
Opis:
The formation of the Polish part of the Outer Carpathian Basin was initiated by the rifting process which led to the collapse and disintegration of the southern margins of the European Platform in the Late Jurassic. Fragments of carbonate platform were incorporated into the basin structures which divided the area into several sedimentary zones located at different depth. Under these conditions, most of the carbonate sediments were transported to the basin in the form of submarine landslides and gravity flows of varying densities, or accumulated during pelagic sedimentation. These deposits belong to two formations exposed in the westernmost part of the Polish Outer Carpathians, located near the Polish-Czech border. The first is mainly represented by the Tithonian marls (Vendryne Fm.) which also contain redeposited carbonate rocks and fossils (Oxfordian-Tithonian), the second is composed of limestones and marly shales of the late Tithonian-Berriasian (Cieszyn Limestone Fm.). These oldest sedimentary rocks in the Polish Outer Carpathians contain mainly benthic foraminifers and very scarce plankton occurring in exotic blocks and sometimes directly in sediments forming both formations. The first group includes forms with calcareous walls and also cemented with siliceous or calcareous material. Calcareous benthic forms belong mainly to Vagulinidae (Vaginulina, Vaginulinopsis, Astacolus, Citharina, Citharinella, Lenticulina, Palmula), Nodosariae (i.e. Frondicularia, Nodosaria, Dentalina), Epistominidae (Epistomina), and Polymorphinidae (Guttulina), while agglutinated taxa are represented by Verneulinidae (Uvigerinammina, Paleogaudryina, Belorussiella, Verneuilina), Andercotrymidae (Praedorothia, Protomarssonella, Pseudomarssonella) and Textulariopsidae (Bicazammina, Hagimashella, Textulariopsis). They can be related to the Jurassic shelf microfauna, which are known both from the Tethys and the European Platform. Among foraminiferal benthos there are also very rare aggluinated taxa belonging to several genera: Melathrokerion, Buccicrenata, Alveosepta, Pseudocyclammina, and the more common calcareous forms of Andersenolina, Neotrocholina, Trocholina, Paalzowella, as well as of Discorbis, which inhabited shallow marine environments formed around the elevations within the basin as well as on its coast. Recently, apart from the benthic microfauna isolated Globigerina-like forms have been also found in the Tithonian deposits. These few forms resemble early planktonic foraminifera of the Western Tethys (Gl. oxfordiana, F. hoterivica) as well as the taxa known epicontinental and subTethyan seas located north (“Gl.” stellapolaris) and east (Gl. balakhmatovae, G. terquemi) of the studied area. The taxonomy, abundance and state of preservation of the described foraminifera from the early basin of the Polish Outer Carpathians indicate a connection with the gradually degraded areas of the platform inhabited by benthic and plankton communities from both the Tethyan and Boreal seas. The studied foraminifera resemble the microfauna of Western and Eastern Tethys and adjacent platforms.
Źródło:
Geotourism / Geoturystyka; 2023, 1-2 (72-73); 70--70
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies