Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "WZ factorization" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Markowitz scheme for the sparse WZ factorization
Autorzy:
Bylina, Beata
Bylina, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/764599.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Źródło:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica; 2007, 6, 1
1732-1360
2083-3628
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The parallel tiled WZ factorization algorithm for multicore architectures
Autorzy:
Bylina, Beata
Bylina, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/331092.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
tiled algorithm
WZ factorization
solution of linear system
Amdahl’s law
high performance computing
multicore architecture
rozkład WZ
układ liniowy
prawo Amdahla
architektura wielordzeniowa
Opis:
The aim of this paper is to investigate dense linear algebra algorithms on shared memory multicore architectures. The design and implementation of a parallel tiled WZ factorization algorithm which can fully exploit such architectures are presented. Three parallel implementations of the algorithm are studied. The first one relies only on exploiting multithreaded BLAS (basic linear algebra subprograms) operations. The second implementation, except for BLAS operations, employs the OpenMP standard to use the loop-level parallelism. The third implementation, except for BLAS operations, employs the OpenMP task directive with the depend clause. We report the computational performance and the speedup of the parallel tiled WZ factorization algorithm on shared memory multicore architectures for dense square diagonally dominant matrices. Then we compare our parallel implementations with the respective LU factorization from a vendor implemented LAPACK library. We also analyze the numerical accuracy. Two of our implementations can be achieved with near maximal theoretical speedup implied by Amdahl’s law.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 2; 407-419
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The inverse iteration with the WZ factorization used to the Markovian models
Autorzy:
Bylina, Beata
Powiązania:
https://bibliotekanauki.pl/articles/764193.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Źródło:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica; 2004, 2, 1
1732-1360
2083-3628
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of preconditioning and blocking on accuracy in solving Markovian models
Autorzy:
Bylina, B.
Bylina, J.
Powiązania:
https://bibliotekanauki.pl/articles/907654.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
kondycjonowanie
równanie liniowe
metoda blokowania
łańcuch Markowa
rozkład WZ
preconditioning
linear equations
blocking methods
Markov chains
WZ factorization
Opis:
The article considers the effectiveness of various methods used to solve systems of linear equations (which emerge while modeling computer networks and systems with Markov chains) and the practical influence of the methods applied on accuracy. The paper considers some hybrids of both direct and iterative methods. Two varieties of the Gauss elimination will be considered as an example of direct methods: the LU factorization method and the WZ factorization method. The Gauss-Seidel iterative method will be discussed. The paper also shows preconditioning (with the use of incomplete Gauss elimination) and dividing the matrix into blocks where blocks are solved applying direct methods. The motivation for such hybrids is a very high condition number (which is bad) for coefficient matrices occuring in Markov chains and, thus, slow convergence of traditional iterative methods. Also, the blocking, preconditioning and merging of both are analysed. The paper presents the impact of linked methods on both the time and accuracy of finding vector probability. The results of an experiment are given for two groups of matrices: those derived from some very abstract Markovian models, and those from a general 2D Markov chain.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2009, 19, 2; 207-217
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies