Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Specific Emitter Identification" wg kryterium: Wszystkie pola


Wyświetlanie 1-12 z 12
Tytuł:
Fractal Features of Specific Emitter Identification
Autorzy:
Dudczyk, J.
Kawalec, A.
Powiązania:
https://bibliotekanauki.pl/articles/1177363.pdf
Data publikacji:
2013-09
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
42.30.Sy
47.54.-r
43.60.Lq
Opis:
This article presents the issues connected with emitter sources identification with low distinctive primary features of a signal. It is a specific type of identification called specific emitter identification, which distinguishes different copies of the same type of emitter. The term of specific emitter identification was presented on the basis of fractal features received from the transformation of measurement data sets. The use of linear regression and Lagrange polynomial interpolation resulted in the estimation of measurement function. The method analysing properties of measurement function which was suggested by the authors caused the extraction of two additional distinctive features. The features above extended the vector of basic radar signals' parameters. The extended vector of radar signals' features made it possible to identify the copy of emitter source.
Źródło:
Acta Physica Polonica A; 2013, 124, 3; 406-409
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applying the radiated emission to the specific emitter identification
Autorzy:
Dudczyk, J.
Wnuk, M.
Matuszewski, J.
Powiązania:
https://bibliotekanauki.pl/articles/309391.pdf
Data publikacji:
2005
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
radiated emission
distance function
homology function
measurement and signature intelligence
specific emitter identification
Opis:
During the last years we have observed fast development of the electronic devices and electronic warfare systems (EW). One of the most principal functions of the ESM/ELINT system is gathering basic information from the entire electromagnetic spectrum and its analysis. Simultaneously, utilization of some tools of artificial intelligence (AI) during the process of emitter identification is very important too. A significant role is played by measurement and signature intelligence (MASINT) based on non-intentional emission (calls-radiated emission). This emission is a source of knowledge about an analysed emitter due to its incidental "chemical", "spectral" traces and non-communication emitter's characteristics. The process of specific emitter identification (SEI) based on extraction of distinctive radiated emission features is presented by the authors. Specially important is utilization of a database (DB) in the process of identifying a detectable radar emission.
Źródło:
Journal of Telecommunications and Information Technology; 2005, 2; 57-60
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Specific emitter identification using geometric features of frequency drift curve
Autorzy:
Zhao, Y.
Wui, L.
Zhang, J.
Li, Y.
Powiązania:
https://bibliotekanauki.pl/articles/200575.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
specific emitter identification
geometric features
frequency drift
adaptive fractional spectrogram
support vector machine
emiter
cechy geometryczne
dryf częstotliwości
spektrogram
Opis:
Specific emitter identification (SEI) is a technique for recognizing different emitters of the same type which have the same modulation parameters. Using only the classic modulation parameters for recognition, one cannot distinguish different emitters of a same type. To solve the problem, new features urgently need to be developed for recognition. This paper focuses on the common phenomenon of frequency drift, defines geometric features of frequency drift curve and, finally, proposes a practical algorithm of specific emitter identification using the geometric features. The proposed algorithm consists of three processes: instantaneous frequency estimation based on the adaptive fractional spectrogram, feature extraction of frequency drift curve based on geometric methods for describing a curve and recognition process based on support vector machine. Simulation results show that the identification rate is generally more than 98% above –5 dB of signal to noise ratio (SNR), and real data experiment verifies the practical performance of the proposed algorithm.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 1; 99-108
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep adversarial neural network for specific emitter identification under varying frequency
Autorzy:
Huang, Keju
Yang, Junan
Liu, Hui
Hu, Pengjiang
Powiązania:
https://bibliotekanauki.pl/articles/2173603.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
specific emitter identification
unsupervised domain adaptation
transfer learning
deep learning
identyfikacja emitera konkretna
adaptacja domeny nienadzorowana
transfer uczenia się
uczenie głębokie
Opis:
Specific emitter identification (SEI) is the process of identifying individual emitters by analyzing the radio frequency emissions, based on the fact that each device contains unique hardware imperfections. While the majority of previous research focuses on obtaining features that are discriminative, the reliability of the features is rarely considered. For example, since device characteristics of the same emitter vary when it is operating at different carrier frequencies, the performance of SEI approaches may degrade when the training data and the test data are collected from the same emitters with different frequencies. To improve performance of SEI under varying frequency, we propose an approach based on continuous wavelet transform (CWT) and domain adversarial neural network (DANN). The proposed approach exploits unlabeled test data in addition to labeled training data, in order to learn representations that are discriminative for individual emitters and invariant for varying frequencies. Experiments are conducted on received signals of five emitters under three carrier frequencies. The results demonstrate the superior performance of the proposed approach when the carrier frequencies of the training data and the test data differ.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 2; art. no. e136737
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep adversarial neural network for specific emitter identification under varying frequency
Autorzy:
Huang, Keju
Yang, Junan
Liu, Hui
Hu, Pengjiang
Powiązania:
https://bibliotekanauki.pl/articles/2128144.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
specific emitter identification
unsupervised domain adaptation
transfer learning
deep learning
identyfikacja emitera konkretna
adaptacja domeny nienadzorowana
transfer uczenia się
uczenie głębokie
Opis:
Specific emitter identification (SEI) is the process of identifying individual emitters by analyzing the radio frequency emissions, based on the fact that each device contains unique hardware imperfections. While the majority of previous research focuses on obtaining features that are discriminative, the reliability of the features is rarely considered. For example, since device characteristics of the same emitter vary when it is operating at different carrier frequencies, the performance of SEI approaches may degrade when the training data and the test data are collected from the same emitters with different frequencies. To improve performance of SEI under varying frequency, we propose an approach based on continuous wavelet transform (CWT) and domain adversarial neural network (DANN). The proposed approach exploits unlabeled test data in addition to labeled training data, in order to learn representations that are discriminative for individual emitters and invariant for varying frequencies. Experiments are conducted on received signals of five emitters under three carrier frequencies. The results demonstrate the superior performance of the proposed approach when the carrier frequencies of the training data and the test data differ.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 2; e136737, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Specific emitter identification based on graphical representation of the distribution of radar signal parameters
Autorzy:
Dudczyk, J.
Kawalec, A.
Powiązania:
https://bibliotekanauki.pl/articles/200468.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Specific Emitter Identification
SEI
radar recognition
ELINT system
Electronics Warfare System
EWS
radar
system ELINT
system EWS
Opis:
The article presents some possibilities of same type radar copies identification with the use of graphical representation. The procedure described by the authors is based on transformation and analysis of basic parameters distribution which are measured by the radar signal especially Pulse Repetition Interval. A radar intercept receiver passively collects incoming pulse samples from a number of unknown emitters. Information such as Pulse Repetition Interval, Angle of Arrival, Pulse Width, Radio Frequency and Doppler shifts are not usable. The most important objectives are to determine the number of emitters present and classify incoming pulses according to emitters. To classify radar emitters and precisely identification the copy of the same type of an emitter source in surrounding environment, we need to explore the detailed structure i.e. intra-pulse information, unintentional radiated electromagnetic emission and fractal features of a radar signal. An emitter has its own signal structure. This part of radar signal analysis is called Specific Emitter Identification. Utilization of some specific properties of electronic devices can cause heightening probability of a correct identification.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2015, 63, 2; 391-396
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Specific emitter identification based on one-dimensional complex-valued residual networks with an attention mechanism
Autorzy:
Qu, Lingzhi
Yang, Junan
Huang, Keju
Liu, Hui
Powiązania:
https://bibliotekanauki.pl/articles/2086889.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
complex-valued residual network
specific emitter identification
fingerprint characteristic
attention mechanism
one-dimensional convolution
sieć rezydualna o złożonej wartości
specyficzna identyfikacja emiterów
charakterystyka linii papilarnych
mechanizm uwagi
splot jednowymiarowy
Opis:
Specific emitter identification (SEI) can distinguish single-radio transmitters using the subtle features of the received waveform. Therefore, it is used extensively in both military and civilian fields. However, the traditional identification method requires extensive prior knowledge and is time-consuming. Furthermore, it imposes various effects associated with identifying the communication radiation source signal in complex environments. To solve the problem of the weak robustness of the hand-crafted feature method, many scholars at home and abroad have used deep learning for image identification in the field of radiation source identification. However, the classification method based on a real-numbered neural network cannot extract In-phase/Quadrature (I/Q)-related information from electromagnetic signals. To address these shortcomings, this paper proposes a new SEI framework for deep learning structures. In the proposed framework, a complex-valued residual network structure is first used to mine the relevant information between the in-phase and orthogonal components of the radio frequency baseband signal. Then, a one-dimensional convolution layer is used to a) directly extract the features of a specific one-dimensional time-domain signal sequence, b) use the attention mechanism unit to identify the extracted features, and c) weight them according to their importance. Experiments show that the proposed framework having complex-valued residual networks with attention mechanism has the advantages of high accuracy and superior performance in identifying communication radiation source signals.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 5; e138814, 1--10
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie promieniowania pozapasmowego w specyficznej identyfikacji źródeł emisji
Radiated emission approach to specific emitter identification
Autorzy:
Dudczyk, J.
Wnuk, M.
Różański, G.
Powiązania:
https://bibliotekanauki.pl/articles/208366.pdf
Data publikacji:
2006
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
radiolokacja
kompatybilność elektromagnetyczna
rozpoznanie
radar
electromagnetic compatibility
recognition
Opis:
Jedną z podstawowych funkcji nowoczesnego systemu ESM/ELINT jest zdobywanie i gromadzenie informacji o rozpoznawanym źródle emisji oraz ich analiza. W ostatnich latach w państwach NATO obserwuje się szybki rozwój urządzeń i systemów walki radioelektronicznej (WRE). Znaczącą rolę zaczyna odgrywać rozpoznanie sygnaturowe MASINT (ang. Measurement and Signature Intelligence), które wykorzystuje niezamierzone emisje uboczne obiektów, tzw. "ślady" spektralne, chemiczne lub częstotliwościowe. Proces specyficznej identyfikacji emiterów SEI (ang. Specific Emitter Identification), bazujący na wykorzystaniu cech dystynktywnych (ekstrahowanych z promieniowania pozapasmowego), został zaprezentowany w niniejszym artykule. Szczególnie istotnym elementem jest zastosowanie bazy danych podczas procesu identyfikacji źródeł emisji elektromagnetycznej [4].
One of the most principal functions of the ESM/ELINT system is gathering basic information from the entire electromagnetic spectrum and its analysis. A significant role plays Measurement and Signature Intelligence (MASINT) based on non-intentional emission (called - radiated emission). This emission is a source of knowledge about an analysed emitter due to its incidental "chemical", "spectral" traces, and non-communication emitter's characteristics. The process of Specific Emitter Identification (SEI) based on extraction of distinctive radiated emission features is presented here. Especially important is utilization of a database (DB) in the process of identifying a detectable radar emission (Ref. 4).
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2006, 55, sp.; 135-153
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identification of emitter sources in the aspect of their fractal features
Autorzy:
Dudczyk, J.
Kawalec, A.
Powiązania:
https://bibliotekanauki.pl/articles/200415.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fractal feature
pattern of radar
signal processing
Specific Emitter Identification (SEI)
Opis:
This article presents the procedure of identification radar emitter sources with the trace distinctive features of original signal with the use of fractal features. It is a specific kind of identification called Specific Emitter Identification, where as a result of using transformations, which change measure points, a transformation attractor was received. The use of linear regression and the Lagrange polynomial interpolation resulted in the estimation of the measurement function. The method analysing properties of the measurement function which has been suggested by the authors caused the extraction of two additional distinctive features. These features extended the vector of basic radar signals’ parameters. The extended vector of radar signals’ features made it possible to identify the copy of radar emitter source.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2013, 61, 3; 623-628
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A method of feature selection in the aspect of specific identification of radar signals
Autorzy:
Dudczyk, J.
Powiązania:
https://bibliotekanauki.pl/articles/200837.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
radar emitter recognition
RER
specific emitter identification
SEI
minimum distance classification
ELINT system
klasyfikator minimalnej odległości
System ELINT
Opis:
This article presents an important task of classification, i.e. mapping surfaces which separate patterns in feature space in the scope of radar emitter recognition (RER) and classification. Assigning a tested radar to a particular class is based on defining its location from the discriminating areas. In order to carry out the classification process, it is necessary to define metrics in the feature space as it is essential to estimate the distance of a classified radar from the centre of the class. The method presented in this article is based on extraction and selection of distinctive features, which can be received in the process of specific emitter identification (SEI) of radar signals, and on the minimum distance classification. The author suggests a RER system which consists of a few independent channels. The task of each channel is to calculate the distance of the tested radar from a given class and finally, set the correct identification coefficient for each recognized radar. Thus, a multichannel system with independent distance measurement is obtained, which makes it possible to recognize particular radar copies. This system is implemented in electronic intelligence (ELINT) system and tested in real battlefield conditions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2017, 65, 1; 113-119
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fast-decision identification algorithm of emission source pattern in database
Autorzy:
Dudczyk, J.
Kawalec, A.
Powiązania:
https://bibliotekanauki.pl/articles/199845.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Fast-decision Identification Algorithm
Specific Emitter Identification
Emitter Pattern
database
superheterodyne ELINT receiver
baza danych
superheterodynowy odbiornik ELINT
algorytm FdIA
Opis:
This article presents Fast-decision Identification Algorithm (FdIA) of Source Emission (SE) in DataBase (DB). The aim of this identification process is to define signal vector (V) in the form of distinctive features of this signal which is received in the process of its measurement. Superheterodyne ELectronic INTelligence (ELINT) receiver in the measure procedure was used. The next step in identification process is comparison vector with pattern in DB and calculation of decision function. The aim of decision function is to evaluate similarity degree between vector and pattern. Identification process mentioned above differentiates copies of radar of the same type which is a special test challenge defined as Specific Emitter Identification (SEI). The authors of this method drew up FdIA and three-stage parameterization by the implementation of three different ways of defining the degree of similarity between vector and pattern (called ’Compare procedure’). The algorithm was tested on hundreds of signal vectors coming from over a dozen copies of radars of the same type. Fast-decision Identification Algorithm which was drawn up and implemented makes it possible to create Knowledge Base which is an integral part of Expert DataBase. As a result, the amount of the ambiguity of decisions in the process of Source Emission Identification is minimized.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2015, 63, 2; 385-389
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Specyficzna identyfikacja emiterów radarowych bazująca na analizie składowych głównych
Specific radar emitter identification based on principal component analysis
Autorzy:
Kawalec, A.
Owczarek, R.
Rapacki, T.
Wnuczek, S.
Powiązania:
https://bibliotekanauki.pl/articles/210693.pdf
Data publikacji:
2006
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
walka elektroniczna
klasyfikacja cech sygnałów radarowych
specyficzna identyfikacja emiterów
przekształcenie Karhunena-Loeve'a
warfare electronic
radar signal feature classification
specific emitter identification
Karhunen-Loeve expansion
Opis:
W artykule została przedstawiona problematyka związana z identyfikacją emiterów radarowych należących do tego samego typu i klasy. Jest to specyficzny rodzaj identyfikacji (SEI, ang. Specific Emitter Identification), polegający na rozróżnianiu poszczególnych egzemplarzy tego samego typu radaru. Klasyczna identyfikacja sygnałów bazująca na analizie statystycznej podstawowych parametrów mierzalnych sygnału nie spełnia wymagań stawianych przed SEI. Przedstawiona w artykule metoda identyfikacji opiera się na przekształceniu Karhunena-Loeve'a (KL), która należy do metod analizy składowych głównych (PCA, ang. Principal Component Analysis).
One of the most difficult tasks in the radar signal processing is optimal features extraction and classification. The multifunction radar systems cannot be classified and precisely recognized by most of new and modern Electronic Support Measure and Electronic Intelligence Devices in the real time. In most cases, the modern ESM/ELINT systems cannot recognize the different devices of the same type or class. New method of the radar identification with a high quality of recognizing is the Specific Emitter Identification (SEI). The main task is to find non-intentional modulations in the receiving signals. This paper provides an overview of the new methods of measurement emitter signal features parameters and their transformation. This paper presents some aspects of radar signal features processing using Karhunen-Loeve's expansion as a feature selection and classification transform.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2006, 55, 1; 41-54
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-12 z 12

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies