Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Schindelbacher, Gerhard" wg kryterium: Wszystkie pola


Wyświetlanie 1-1 z 1
Tytuł:
Artificial Intelligence Approaches to Determine Graphite Nodularity in Ductile Iron
Autorzy:
Brait, Maximilian
Koppensteiner, Eduard
Schindelbacher, Gerhard
Li, Jiehua
Schumacher, Peter
Powiązania:
https://bibliotekanauki.pl/articles/2056034.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
ductile iron
graphite nodularity
graphite morphology
artificial intelligence
machine learning
żeliwo sferoidalne
guzkowatość grafitu
morfologia grafitu
sztuczna inteligencja
uczenie maszynowe
Opis:
The complex metallurgical interrelationships in the production of ductile cast iron can lead to enormous differences in graphite formation and local microstructure by small variations during production. Artificial intelligence algorithms were used to describe graphite formation, which is influenced by a variety of metallurgical parameters. Moreover, complex physical relationships in the formation of graphite morphology are also controlled by boundary conditions of processing, the effect of which can hardly be assessed in everyday foundry operations. The influence of relevant input parameters can be predetermined using artificial intelligence based on conditions and patterns that occur simultaneously. By predicting the local graphite formation, measures to stabilise production were defined and thereby the accuracy of structure simulations improved. In course of this work, the most important dominating variables, from initial charging to final casting, were compiled and analysed with the help of statistical regression methods to predict the nodularity of graphite spheres. We compared the accuracy of the prediction by using Linear Regression, Gaussian Process Regression, Regression Trees, Boosted Trees, Support Vector Machines, Shallow Neural Networks and Deep Neural Networks. As input parameters we used 45 characteristics of the production process consisting of the basic information including the composition of the charge, the overheating time, the type of melting vessel, the type of the inoculant, the fading, and the solidification time. Additionally, the data of several thermal analysis, oxygen activity measurements and the final chemical analysis were included. Initial programme designs using machine learning algorithms based on neural networks achieved encouraging results. To improve the degree of accuracy, this algorithm was subsequently adapted and refined for the nodularity of graphite.
Źródło:
Journal of Casting & Materials Engineering; 2021, 5, 4; 94--102
2543-9901
Pojawia się w:
Journal of Casting & Materials Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies