Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Nordhaus-Gaddum bound" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Nordhaus-Gaddum bounds for upper total domination
Autorzy:
Haynes, Teresa W.
Henning, Michael A.
Powiązania:
https://bibliotekanauki.pl/articles/2216175.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
upper total domination
Nordhaus-Gaddum bound
Opis:
A set S of vertices in an isolate-free graph G is a total dominating set if every vertex in G is adjacent to a vertex in S. A total dominating set of G is minimal if it contains no total dominating set of $\bar{G}$ as a proper subset. The upper total domination number $Γ_t(G)$ of G is the maximum cardinality of a minimal total dominating set in G. We establish Nordhaus-Gaddum bounds involving the upper total domination numbers of a graph G and its complement $\bar{G}$. We prove that if G is a graph of order n such that both G and $\bar{G}$ are isolate-free, then $Γ_t(G) + Γ_t(\bar{G}) ≤ n + 2$ and $Γ_t(G)Γ_t(\bar{G}) ≤ 1/4 (n + 2)^2$, and these bounds are tight.
Źródło:
Opuscula Mathematica; 2022, 42, 4; 573-582
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Remarks on the outer-independent double Italian domination number
Autorzy:
Volkman, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/2051048.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
double Italian domination number
outer-independent double Italian domination number
Nordhaus-Gaddum bound
Opis:
Let $G$ be a graph with vertex set $V(G)$. If $u \in V(G)$, then $N[u]$ is the closed neighborhood of $u$. An outer-independent double Italian dominating function (OIDIDF) on a graph $G$ is a function $ƒ : V(G) \rightarrow \{0, 1, 2, 3\}$ such that if $ƒ (v) \in \{0, 1\}$ for a vertex $v \in V(G)$, then $\Sigma_{x \in N[v]} f(x) \geq 3$, and the set ${u \in V(G) : f (u) = 0}$ is independent. The weight of an OIDIDF $f$ is the sum $\Sigma_{v \in V(G)} f(v)$. The outer-independent double Italian domination number $\gamma_{oidI}(G)$ equals the minimum weight of an OIDIDF on G. In this paper we present Nordhaus-Gaddum type bounds on the outer-independent double Italian domination number which improved corresponding results given in [F. Azvin, N. Jafari Rad, L. Volkmann, \textit{Bounds on the outer-independent double Italian domination number}, Commun. Comb. Optim. 6 (2021), 123-136]. Furthermore, we determine the outer-independent double Italian domination number of some families of graphs.
Źródło:
Opuscula Mathematica; 2021, 41, 2; 259-268
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Extremal Graphs for a Bound on the Roman Domination Number
Autorzy:
Bouchou, Ahmed
Blidia, Mostafa
Chellali, Mustapha
Powiązania:
https://bibliotekanauki.pl/articles/31513493.pdf
Data publikacji:
2020-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Roman domination
Roman domination number
Nordhaus-Gaddum inequalities
Opis:
A Roman dominating function on a graph G = (V, E) is a function f:V (G) → {0, 1, 2} such that every vertex u for which f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman dominating function is the value w(f) = Σu∈V(G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G, denoted by γR(G). In 2009, Chambers, Kinnersley, Prince and West proved that for any graph G with n vertices and maximum degree Δ, γR(G) ≤ n + 1 − Δ. In this paper, we give a characterization of graphs attaining the previous bound including trees, regular and semiregular graphs. Moreover, we prove that the problem of deciding whether γR(G) = n + 1 − Δ is co-complete. Finally, we provide a characterization of extremal graphs of a Nordhaus–Gaddum bound for γR(G) + γR (Ḡ), where Ḡ is the complement graph of G.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 3; 771-785
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies