Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "NDS" wg kryterium: Wszystkie pola


Tytuł:
Badania emisji produktów zgazowania modelu styropianowego w technologii lost foam w aspekcie środowiska pracy
Studying the emission of products formed during evaporation of polystyrene patterns in the lost foam process in terms of the work environment
Autorzy:
Żmudzińska, M.
Faber, J.
Perszewska, K.
Żółkiewicz, Z.
Maniowski, Z.
Powiązania:
https://bibliotekanauki.pl/articles/391587.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Odlewnictwa
Tematy:
modele zgazowywane
technologia lost foam
środowisko pracy
NDS
lost foam patterns
lost foam technology
work environment
MAC
Opis:
W artykule zaprezentowano aspekt ekologiczny technologii modeli zgazowywanych. Przedstawiono wyniki badań środowiskowych przeprowadzonych na stanowisku doświadczalnym zalewania form ciekłym metalem oraz wybijania odlewów w procesie lost foam. Określono wpływ technologii modeli zgazowywanych na środowisko pracy.
The article presents the ecological aspects of the lost foam technology. The results of environmental tests carried out on an experimental stand for pouring of moulds with liquid metal and knocking out of castings in the lost foam process were presented. The influence of the lost foam technology on the work environment was determined.
Źródło:
Prace Instytutu Odlewnictwa; 2011, 51, 1; 23-33
1899-2439
Pojawia się w:
Prace Instytutu Odlewnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pyły zawierające azbest chryzotylowy oraz pyły zawierające azbest chryzotylowy i inne minerały włókniste z wyjątkiem krokidolitu. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego
Chrisotile asbestos
Autorzy:
Więcek, E.
Woźniak, H.
Powiązania:
https://bibliotekanauki.pl/articles/138278.pdf
Data publikacji:
2004
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
azbest chryzotylowy
włókna mineralne
narażenie zawodowe
pylica azbestowa
rak płuca
międzybłoniak
ryzyko nowotworowe
najwyższe dopuszczalne stężenie (NDS)
chrisotile asbestos
mineral fibres
occupational exposure
asbestosis
lung cancer
mesothelioma
cancerogenic risk
maximum allowable concentration (occupational exposure level)
Opis:
Azbest chryzotylowy jest uwodnionym krzemianem magnezu, który znalazł zastosowanie głównie do produkcji wyrobów azbestowo-cementowych, włókienniczych, izolacyjnych, uszczelniających i ciernych. Największe stężenia pyłu całkowitego azbestu chryzotylowego w Polsce stwierdzono w zakładach wyrobów azbestowo-cementowych i stosujących wyroby azbestowe, a największe stężenia respirabilnych włókien mineralnych – w zakładach włókienniczo-azbestowych i wyrobów ciernych. Stężenia te często przekraczały wartości NDS. Narażenie zawodowe na azbest może być przyczyną następujących chorób: pylicy płuc (azbestozy), raka płuca i znacznie rzadziej międzybłoniaka. Możliwe są także nowotwory o innej lokalizacji. Dla pylicy płuc i raka płuca udowodniono zależność między skutkiem zdrowotnym a dawką kumulowaną pyłu; w przypadku obydwu schorzeń udowodniono wzrost ryzyka u nałogowych palaczy tytoniu. Uwzględniając wyniki badań epidemiologicznych, z których wynika, że średnia wartość LOAEL wynosi 86 wł - lata - cm3, a także po przyjęciu odpowiednich współczynników niepewności, zaproponowano wartość NDS dla pyłów azbestu chryzotylowego oraz pyłów zawierających azbest chryzotylowy i inne minerały włókniste z wyjątkiem krokidolitu, która wynosi 0,2 wł/cm3, zamiast dotychczasowej wartości 0,5 wł/cm3. Nie ma podstaw do zmiany wartości NDS dla pyłu całkowitego, która wynosi 1 mg/m3. Oszacowane ryzyko nowotworowe (rak płuca) dla narażenia zawodowego na stężenia 0,2 wł/cm3 dla osób palących wynosi: od 1,2 - 10-3 przy 10-letnim okresie narażenia do 4,8 - 10-3 dla 40-letniego okresu narażenia, a dla osób niepalących od 1,2 10-4 do 4,8 - 10-4, odpowiednio przy 10- i 40-letnim okresie narażenia. Ryzyko nowotworowe (rak płuca i międzybłoniak) wynosi od 5 - 10-4 przy rocznym narażeniu i do 4 - 10-3 przy 20-letnim okresie narażenia.
Chrisotile asbestos Mg3(Si2O5)(OH)8 is a hydrated silicate of magnesium and it belongs to the group of serpentine minerals. Chrisotile fibres have many uses, mostly in the production of asbestos-cement, textile, insulating and friction products. Occupational exposure to asbestos dusts can cause the following diseases: asbestosis, lung cancer, and considerably more seldom mesothelioma. For asbestosis and lung cancer the relationship between the biological effect and the cumulated dose of asbestos fibres has been proved. The risk of developing mesothelioma is relative to the time that elapses from the first exposure to asbestos fibres. Taking into account data from epidemiological and experimental studies the following values are proposed: occupational exposure limit (OEL) for dusts containing chrisotile and other fibrous minerals except for crocidolite – 0.2 fb/cm3 instead of the compulsory value – 0.5 fb/cm3. There are no bases to change OEL for total dust, which is 1.0 mg/m3.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2004, 4 (42); 87-128
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Benzen. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Benzene. Documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Szymańska, Jadwiga
Frydrych, Barbara
Bruchajzer, Elżbieta
Powiązania:
https://bibliotekanauki.pl/articles/23352096.pdf
Data publikacji:
2022
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
benzen
toksyczność
rakotwórczość
narażenie zawodowe
NDS
nauki o zdrowiu
inżynieria środowiska
benzene
toxicity
carcinogenicity
occupational exposure
MAC
health sciences
environmental engineering
Opis:
Benzen jest bezbarwną lub lekko żółtą cieczą o charakterystycznym zapachu. Naturalnymi źródłami benzenu są gazy emitowane z wulkanów i pożarów lasów oraz produkty ropopochodne. Benzen stosuje się przede wszystkim jako rozpuszczalnik oraz materiał wyjściowy w syntezie wielu chemikaliów. W Polsce w 2020 r. 28 osób pracowało w narażeniu na benzen o stężeniach powyżej obowiązującej wartości NDS. Benzen działa narkotycznie w warunkach zatrucia ostrego. Ciekły działa drażniąco. Po narażeniu przewlekłym u ludzi obserwowano zmiany hematologiczne we krwi oraz nowotwory, w tym ostrą białaczkę szpikową. Podobne efekty obserwowano u zwierząt laboratoryjnych. Benzen i/lub jego metabolity wykazują działanie genotoksyczne. Takie działanie benzenu wykazano u ludzi zawodowo narażonych na związek o stężeniu <3,2 mg/m3(<1 ppm). Benzen nie jest teratogenem dla zwierząt. Jako wartość NDS dla benzenu proponuje się przyjąć stężenie rekomendowane w dyrektywie Parlamentu Europejskiego i Rady, zmieniającej dyrektywę 2004/37/WE, tj. 0,66 mg/m3. Ryzyko wystąpienia białaczki u pracowników zawodowo narażonych na benzen o stężeniu 0,66 mg/m3 mieści się w zakresie 2,7 · 10−4 ÷ 1˚10−3. Proponuje się także dodać notacje: „Carc. 1A” (substancja rakotwórcza kategorii zagrożenia 1A); „skóra” (wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową); „Muta. 1B” (działanie mutagenne na komórki rozrodcze kategorii zagrożenia 1B). Jako biomarkery zawodowego narażenia na benzen zaproponowano stężenie benzenu 2,5 μg/l moczu oraz stężenie kwasu S-fenylomerkapturowego (S-PMA) na poziomie 9,0 μg/g kreatyniny w moczu. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
Benzene is a colorless to slightly yellow liquid with the characteristic odor. Gases emitted from volcanoes and forest fires as well as petroleum products are natural sources of benzene. It is used primarily as a solvent and a starting material in the synthesis of many chemicals. In 2020 Poland, 28 people were exposed to benzene in concentrations exceeding the current TLV value. Benzene is a narcotic under the severe poisoning conditions. The liquid is irritating. Haematological changes in the blood and neoplasms, including acute myeloid leukemia, have been observed in humans after chronic exposure. Similar effects were seen in laboratory animals. Benzene and/or its metabolites are genotoxic. Such an effect of benzene was demonstrated in people occupationally exposed to the compound at a concentration of < 3.2 mg/m³ (< 1 ppm). Benzene is not an animal teratogen. As the value of TLV for benzene, it is proposed to adopt the concentration recommended in the Directive of the European Parliament and of the Council amending Directive 2004/37/EC, i.e. 0.66 mg/m3 . The risk of leukemia at employees professionally exposed to benzene at a concentration of 0.66 mg/m3 is within the range from 2.7 • 10−4 to 1 • 10−3. It is also proposed to add the following notations: “Carc. 1A” (carcinogenic substance of hazard category 1A); “Skin” (the absorption of substances through the skin may be as important as for inhalation exposure); “Muta. 1B” (germ cell mutagenicity, hazard category 1B). Benzene concentration of 2.5 µg/l of urine and the concentration of S-phenylmercapturic acid (S-PMA) at the level of 9.0 µg/g of creatinine in urine were proposed as biomarkers of occupational exposure to benzene. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2022, 3 (113); 21-117
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dekan-1-ol i jego izomery: dekan-2-ol, dekan-3-ol, dekan-4-ol, dekan-5-ol. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
1-Decanol and its isomers: 2-decanol, 3-decanol, 4-decanol, 5-decanol. Documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Szymańska, Jadwiga
Frydrych, Barbara
Bruchajzer, Elżbieta
Powiązania:
https://bibliotekanauki.pl/articles/2146834.pdf
Data publikacji:
2021
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
dekan-1-ol
toksyczność
narażenie zawodowe
NDS
nauki o zdrowiu
inżynieria środowiska
1-decanol
toxicity
occupational exposure
health sciences
environmental engineering
Opis:
Dekan-1-ol [112-30-1] jest alifatycznym alkoholem tłuszczowym o dziesięciu atomach węgla. Jest on jednym z pięciu izomerów dekanolu. Są to alkohole o średniej długości łańcucha, które znalazły zastosowanie w produkcji: rozpuszczalników, środków powierzchniowo czynnych, pestycydów, smarów, wosków, kremów oraz kosmetyków. Dekan-1-ol i dekan-3-ol są stosowane również jako syntetyczne substancje smakowo-zapachowe dodawane do żywności. Związek ten naturalnie występuje w olejkach eterycznych pozyskiwanych z nasion i kwiatów różnych roślin, na skalę przemysłową jest otrzymywany na drodze syntezy chemicznej. Narażenie zawodowe na dekan-1-ol dotyczy osób uczestniczących w procesie produkcji i stosowania tej substancji. W warunkach pracy zawodowej głównymi drogami narażenia są układ oddechowy i skóra. Do najczęstszych objawów zatrucia należą podrażnienie oczu i skóry. Wyniki badań uzyskane z użyciem testów in vitro i in vivo wskazują, że dekan-1-ol nie działał mutagennie i genotoksycznie. W badaniach na zwierzętach nie zanotowano również zmian nowotworowych będących wynikiem narażenia na ten związek. W dostępnych wynikach badań brak jest informacji o toksyczności narządowej dekan-1-olu i/lub jego izomerów u ludzi, a także nie ma wystarczających wyników badań na zwierzętach narażanych drogą inhalacyjną lub pokarmową. Zaproponowano przyjąć za podstawę do wyznaczenia NDS dla dekan-1-olu wyniki badań uzyskane na zwierzętach dla związków o podobnej strukturze chemicznej, tj. 2-etyloheksanolu i oktan-1-olu. Zaproponowano wartość NDS dla dekan-1-olu i jego izomerów na poziomie 30 mg/m³ , a wartość chwilową NDSCh na poziomie 60 mg/m³ . Nie ma podstaw do wyznaczenia wartości dopuszczalnego stężenia w materiale biologicznym – DSB. Ze względu na działanie drażniące substancję oznakowano literą „I”. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
1-Decanol [112-30-1] is an aliphatic fatty alcohol with ten carbon atoms. It is one of five isomers of decanol. They are medium chain length alcohols that have found use in the manufacture of solvents, surfactants, pesticides, lubricants, waxes, creams and cosmetics. 1-Decanol and 3-decanol are also used as synthetic flavourings added to foods. This compound occurs naturally in essential oils extracted from the seeds and flowers of various plants, while on an industrial scale it is obtained by chemical synthesis. Occupational exposure to 1-decanol concerns individuals involved in the production process and use of this substance. Under occupational conditions, the main routes of exposure are the respiratory system and the skin. The most common symptoms of poisoning are eye and skin irritation. Results from in vitro and in vivo tests indicate that 1-decanol did not have mutagenic or genotoxic effects. Also, no tumour changes resulting from exposure to this compound were noted in animal studies. Available literature lacks information on organ toxicity of 1-decanol and/or its isomers in humans and there are no sufficient results of studies on animals exposed to the compound by inhalation or ingestion. The results of animal studies for compounds with a similar chemical structure, i.e. 2-ethylhexanol and octane-1-ol, were taken as the basis for the determination of the MAC (TWA) for 1-decanol. For 1-decanol and its isomers a MAC of 30 mg/m³ was proposed and STEL of 60 mg/m³ . There is no basis for setting a concentration limit value in biological material – DSB. The substance is labelled with the letter "I" for irritation.This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2021, 4 (110); 5--32
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mieszanina polichlorowanych dibenzo-p-dioksyn i polichlorowanych dibenzofuranów : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Mixture of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans : documentation of proposed values of occupational exposure limits(OELs)
Autorzy:
Szymańska, Jadwiga
Frydrych, Barbara
Struciński, Paweł
Szymczak, Wiesław
Hernik, Agnieszka
Bruchajzer, Elżbieta
Powiązania:
https://bibliotekanauki.pl/articles/138385.pdf
Data publikacji:
2020
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
mieszanina PCDDs i PCDFs
toksyczność
narażenie zawodowe
NDS
nauki o zdrowiu
inżynieria środowiska
PCDDs and PCDFs mixture
toxicity
occupational exposure
MAC-TWA
health sciences
environmental engineering
Opis:
Polichlorowane dibenzo-p-dioksyny (PCDDs) i polichlorowane dibenzofurany (PCDFs), nazywane powszechnie „dioksynami”, należą do halogenopochodnych węglowodorów aromatycznych charakteryzujących się: zbliżoną budową, właściwościami fizykochemicznymi oraz toksykologicznymi. Nie są stosowane komercyjnie, powstają jako produkty uboczne w trakcie: awarii, spalania, niektórych procesów przemysłowych itp. Wartości LD50 (0,002 ÷ 300 mg/kg) zależą od gatunku badanych zwierząt oraz budowy chemicznej związku. Dostępne w literaturze dane dotyczące toksyczności przewlekłej dotyczą głównie 2,3,7,8-TCDD i 2,3,4,7,8-PeCDF. Potencjalne drogi narażenia ludzi na PCDDs i PCDFs to: układ pokarmowy, płuca i skóra. Związki te są kumulowane głównie w wątrobie i tkance tłuszczowej. Ich polarne metabolity mogą podlegać sprzęganiu z kwasem glukuronowym i glutationem. Głównymi drogami wydalania są żółć i kał. U ssaków PCDDs i PCDFs są eliminowane również z mlekiem matki. Wyniki badań mutagenności i genotoksyczności PCDDs (głównie 2,3,7,8-TCDD) i PCDFs oraz ich wpływ na płodność i rozrodczość są niespójne. Spośród PCDDs i PCDFs związkiem najsilniej wpływającym na płodność, rozrodczość i rozwój płodów jest 2,3,7,8-TCDD. Podstawą do oceny działania rakotwórczego dioksyn (w tym 2,3,7,8-TCDD) i furanów u ludzi są badania epidemiologiczne. Kohorty obejmują osoby narażone zawodowo na: chlorofenole, herbicydy fenoksyoctowe oraz mieszaninę polichlorowanych dibenzodioksyn i furanów. PCDDs i PCDFs mają wsplólny mechanizm działania toksycznego związany z aktywacją receptora Ah. Związki te są uważane za induktory szeregu enzymów (np. CYP1A) i modulatory hormonów oraz czynników wzrostu. Aktywność CYP1A1 jest jednym z najczulszych wskaźników narażenia na 2,3,7,8-TCDD. U szczurów i myszy po podaniu 2,3,7,8-TCDD stwierdzono: gruczolakoraki i raki wątrobowokomórkowe oraz raki wywodzące się z przewodów żółciowych. Zmiany nowotworowe obserwowano także w innych narządach. Wyniki badań NTP wykazały również rakotwórcze działania 2,3,4,7,8-PeCDF. Według IARC wystarczające dowody działania rakotwórczego na ludzi istnieją jedynie dla 2,3,7,8-TCDD (CAS: 1746-01-6) i 2,3,4,7,8 PeCDF (CAS: 57117- 31-4). Pozostałe PCDDs i PCDFs są zaliczane do substancji niemożliwych do zaklasyfikowania jako rakotwórcze dla człowieka. Za podstawę do wyznaczenia wartości NDS dla mieszniny PCDDs i PCDFs przyjęto wyniki przeprowadzonej w 2017 r. oceny ryzyka wystąpienia dodatkowego nowotworu wątroby u ludzi narażanych w środowisku pracy na 2,3,7,8-TCDD. Ryzyko to oceniono na – 10 - 4 dla 40 lat narażenia na związek o stężeniu 18 pg/m³ . W przypadku narażenia łącznego, zawartość polichlorowanych dibenzo-p-dioksyn i furanów w badanych próbkach, a także ich najwyższe dopuszczalne poziomy są wyrażane w postaci tzw. równoważnika sumarycznej toksyczności (TEQ), (ang. toxicity equivalent). Dla mieszaniny PCDDs i PCDFs zaproponowano przyjąć wartość 18 pg WHO2006-TEQ/m³ . Wynik wyrażony jako pg WHO-TEQ/m³ nie jest stężeniem, lecz określeniem sumarycznej toksyczności mieszaniny kongenerów dioksyn i furanów, zawartych w próbce w odniesieniu do TCDD. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), commonly known as „dioxins” are compounds with similar structure, physicochemical and toxicological properties. They are not used commercially, they are formed as by-products during certain industrial processes, combustion, failures, etc. LD50 values (0.002–300 mg/kg) depend on the species of the animal tested and the chemical structure of the particular compound. Information on chronic toxicity mainly relates to 2,3,7,8-TCDD and 2,3,4,7,8-PeCDF. Potential routes of human exposure are the digestive system, lungs and skin. These compounds are accumulated mainly in the liver and adipose tissue. Their polar metabolites may undergo conjugation with glucuronic acid and glutathione. The main routes of excretion are bile and feces. In mammals, PCDDs/PCDFs are also eliminated in breast milk. The results of mutagenicity and genotoxicity tests of PCDDs (mainly 2,3,7,8-TCDD) and PCDFs and their effects on fertility and reproduction are inconsistent. Among PCDDs and PCDFs, the compound that most strongly affects fertility, reproduction and fetal development is 2,3,7,8-TCDD. Epidemiological studies are the basis for assessing the carcinogenic potential of dioxins (including 2,3,7,8-TCDD) and furans in humans. Cohorts include those occupationally exposed to chlorophenols, phenoxyacetic herbicides and a mixture of polychlorinated dibenzodioxins and furans. PCDDs/PCDFs have a common mechanism of toxic action associated with activation of the Ah receptor. PCDDs/ PCDFs are considered to be inducers of several enzymes (e.g. CYP1A) and modulators of hormones and growth factors. CYP1A1 activity is one of the most sensitive indicators of exposure to 2,3,7,8-TCDD. Adenocarcinomas and hepatocellular carcinomas as well as bile ducts have been found in rats and mice exposed to 2,3,7,8-TCDD. Tumor changes have also been observed in other organs. NTP studies also showed carcinogenic effects of 2,3,4,7,8-PeCDF. According to IARC, sufficient evidence of a carcinogenic effect on humans exists only for 2,3,7,8-TCDD (CAS: 1746-01-6) and 2,3,4,7,8 PeCDF (CAS: 57117-31-4). Other PCDDs / PCDFs cannot be classified as carcinogenic to humans.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2020, 1 (103); 71-142
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Spaliny emitowane z silników Diesla, mierzone jako węgiel elementarny : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Diesel engine exhaust, measured as elemental carbon : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Szymańska, Jadwiga
Frydrych, Barbara
Bruchajzer, Elżbieta
Powiązania:
https://bibliotekanauki.pl/articles/137403.pdf
Data publikacji:
2019
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
spaliny emitowane z silnika Diesla
toksyczność
narażenie zawodowe
NDS
nauki o zdrowiu
inżynieria środowiska
Diesel engine emissions
toxicity
occupational exposure
MAC-TWA
health sciences
environmental engineering
Opis:
Spaliny emitowane z silników Diesla (SESD) to wieloskładnikowe mieszaniny związków chemicznych powstające w wyniku niecałkowitego spalania paliwa i oleju silnikowego. Działanie toksyczne spalin jest związane z obecnością w nich związków o działaniu toksycznym i kancerogennym. W GIS podano w 2019 r., że liczba pracowników zatrudnionych w warunkach stanowiących 0,1 ÷ 0,5 wartości NDS (obowiązujących dla spalin emitowanych z silników Diesla) w 2017 r. oraz w 2018 r. wynosiła odpowiednio 1 071 i 986, natomiast w warunkach 0,5 ÷ 1 NDS wynosiła odpowiednio 26 i 46. W wykazie chorób zawodowych w latach 2013- 2017 zarejestrowano 2 przypadki nowotworów: jeden pęcherza moczowego i jeden krtani (narażenie na WWA obecne w spalinach). W klinicznym obrazie ostrego zatrucia spalinami dominuje działanie drażniące na błony śluzowe oczu i górnych dróg oddechowych. Podrażnienie spojówek oczu jest uważane za jeden z bardziej czułych wskaźników narażenia na spaliny. Zatrucia przewlekłe są obserwowane zazwyczaj u osób zawodowo narażonych przez co najmniej kilka lat. Dominują u nich zmiany czynnościowe i morfologiczne w układzie oddechowym. Przedłużające się narażenie na duże stężenia spalin powodowało: kumulację cząstek stałych w makrofagach, zmiany w komórkach płuc, zwłóknienie i metaplazję nabłonka. Narażenie na spaliny może zaostrzać objawy istniejących już chorób, np. astmy czy alergii. Wyniki badań epidemiologicznych świadczą o istnieniu związku pomiędzy zawodowym narażeniem na spaliny emitowane z silników Diesla a zwiększoną częstością występowania pewnych grup nowotworów, głównie raka płuca i raka pęcherza moczowego. W badaniach przeprowadzonych na zwierzętach laboratoryjnych wykazano, że narażenie na spaliny emitowane z silników Diesla powodowało zaburzenia układów: oddechowego, krążenia, nerwowego i odpornościowego. W testach mutagenności wykazano dodatnie reakcje w kilku szczepach Salmonella. Wyniki badań na zwierzętach (narażenie prenatalne i dorosłych osobników) świadczą o tym, że narażenie na spaliny może mieć wpływ na płodność samców. W załączniku III Dyrektywy Parlamentu Europejskiego i Rady (UE) 2019/130 zostały zamieszczone wartości dopuszczalne narażenia zawodowego zmieniające dyrektywę 2004/37/WE. Dla spalin emitowanych z silników Diesla dla 8-godzinnego dnia pracy wartość ta została ustalona na 0,05 mg/m3 (mierzone jako węgiel elementarny). Po 1 ÷ 2-godzinnym narażeniu inhalacyjnym ludzi na stężenia 75 ÷ 225 µg/m³ (jako węgiel elementarny) obserwowano zmniejszenie parametrów czynnościowych układu oddechowego oraz wystąpienie zmian zapalnych w płucach. Brak jest wystarczających danych dotyczących narażenia zawodowego na spaliny emitowane z silników Diesla nowej generacji. W związku z tym zaproponowano przyjąć jako wartość NDS dla spalin emitowanych z silników Diesla stężenie 0,05 mg/m³ (mierzone jako węgiel elementarny) ujęte w Dyrektywie 2019/130, bez wyznaczania wartości NDSCh oraz NDSP. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
Exhaust emissions from diesel engines (SESD) are multi-component mixtures of chemical compounds resulting from incomplete combustion of fuel and engine oil. The toxic effect of exhaust gases is associated with the presence of toxic and carcinogenic compounds in them. GIS reports in 2019 that the number of employees employed in conditions constituting 0.1– 0.5 of MAC-TWA (applicable for exhaust emissions from diesel engines) in 2017 and in 2018 was 1071 and 986, respectively, while in conditions 5–1 MAC-TWA were 26 and 46, respectively. In the list of occupational diseases in the years 2013–2017, two cases of cancer were registered: in the bladder and in the larynx (exposure to PAHs present in exhaust gases). In the clinical picture of acute exhaust poisoning, irritant effects on the mucous membranes of the eyes and upper respiratory tract predominate. Eye conjunctival irritation is considered to be one of the most sensitive indicators of exhaust gas exposure. Chronic poisoning is usually seen in people who have been exposed to work for at least several years. Functional and morphological changes in the respiratory system dominate. Prolonged exposure to high concentrations of exhaust gases has resulted in accumulation of solid particles in macrophages, changes in lung cells, fibrosis and epithelial metaplasia. Exposure to exhaust fumes can exacerbate the symptoms of existing diseases, e.g., asthma, allergies. The results of epidemiological studies indicate a relationship between occupational exposure to exhaust gas emitted from diesel engines and the increased incidence of certain groups of cancers, mainly lung cancer and bladder cancer. Studies conducted on laboratory animals have shown that exposure to exhaust fumes emitted from diesel engines caused disorders of the respiratory, circulatory, nervous and immune systems. Mutagenicity tests showed positive responses in several Salmonella strains. Animal studies (prenatal and adult exposure) suggest that exposure to exhaust gas may affect male fertility. Annex III of Directive (EU) 2019/130 of the European Parliament and of the Council contains occupational exposure limit values amending Directive 2004/37/EC. For exhaust emissions from diesel engines for an 8-hour working day, this value was set at 0.05 mg/m³ (measured as elemental carbon). After 1–2 hours of human inhalation exposure to concentrations of 75–225 µg/m³ (as elemental carbon), a decrease in respiratory function parameters and the occurrence of inflammatory changes in the lungs were observed. There is insufficient data on occupational exposure to exhaust emissions from new-generation diesel engines. Therefore, it was proposed to adopt as the MAC-TWA value for exhaust emissions from diesel engines a concentration of 0.05 mg/m³ (measured as elemental carbon) included in Directive 2019/130, without setting STEL and TLV-C. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2019, 4 (102); 43-103
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
2-Metoksyetanol
2-Methoxyethanol
Autorzy:
Szymańska, J.A.
Bruchajzer, E
Powiązania:
https://bibliotekanauki.pl/articles/137413.pdf
Data publikacji:
2010
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
2-Metoksyetanol
efekty hematologiczne
narażenie zawodowe
DSB
NDS
2-methoxyethanol
haematologic effects
occupational exposure
Opis:
2-Metoksyetanol (2-ME) jest bezbarwną cieczą o łagodnym, przyjemnym zapachu i gorzkim smaku stosowaną w przemyśle chemicznym, metalurgicznym, maszynowym, elektronicznym, meblowym, tekstylnym, skórzanym i kosmetycznym. 2-Metoksyetanol jest rozpuszczalnikiem acetylocelulozy i nitrocelulozy, żywic naturalnych i syntetycznych, chlorokauczuku, farb, lakierów, politur i atramentów. Używa się go również przy produkcji filmów fotograficznych i w procesach fotolitograficznych (np. przy wytwarzaniu półprzewodników). 2-Metoksyetanol jest stosowany także jako utrwalacz przy produkcji perfum, płynnych mydeł i innych kosmetyków. W 2000 r. nie zanotowano w przemyśle polskim narażenia pracowników na działanie 2-metoksyetanolu o stężeniach, które przekraczałyby obowiązującą wartość NDS ustaloną na poziomie 15 mg/m3. Również wg danych Głównej Inspekcji Sanitarnej takich przekroczeń w 2007 r. nie było. Zatrucia ostre 2-metoksyetanolem u ludzi występują rzadko i są związane ze spożyciem 2-metoksyetanolu zamiast alkoholu etylowego. Występujące z opóźnieniem objawy zatrucia 100 ml 2-metoksyetanolu to: zaburzenia świadomości, nudności, wymioty, ogólne osłabienie, bezład, zwolnienie oddechu i znaczna kwasica metaboliczna. Po przewlekłym narażeniu na działanie 2-metoksyetanolu o stężeniu 12 mg/m3 u 26% pracowników obserwowano zaburzenia hematologiczne w postaci niedokrwistości. Na podstawie wyników badań epidemiologicznych wykazano niekorzystny wpływ 2-metoksyetanolu na rozrodczość i rozwój płodów. Narażenie mężczyzn na 2-metoksyetanol o stężeniach 17 ÷ 26 mg/m3 powodowało zmniejszenie wielkości jąder. U kobiet narażonych na 2-metoksyetanol w pierwszym trymestrze ciąży stwierdzano 2- ÷ 3-krotny wzrost ryzyka częstości wystąpienia samoistnych poronień. U noworodków obserwowano nasilenie częstości występowania: zaburzeń kostnienia, wad rozwojowych żeber i układu sercowo-naczyniowego oraz rozszczepu podniebienia, a także wad mnogich. Na podstawie wartości DL50 wynoszącej 2370 ÷ 3400 mg/kg m.c. ustalonej dla szczurów po dożołądkowym podaniu 2-metoksyetanolu, związek nie został zaklasyfikowany jako substancja szkodliwa. Zarówno krótkotrwałe, jak i wielokrotne narażenie zwierząt na 2-metoksyetanol powodowało podobne skutki działania obserwowane u ludzi, tj. zaburzenia hematologiczne i zaburzenia płodności. 2-Metoksyetanol nie wykazywał działania mutagennego, genotoksycznego i rakotwórczego. Po narażeniu ciężarnych samic szczurów i myszy w okresie organogenezy na 2-metoksyetanol o stężeniu 31 mg/m3 nie obserwowano działania embriotoksycznego i teratogennego. Po narażeniu na działanie związku o większych stężeniach (155 ÷ 310 mg/m3) obserwowano zwiększenie resorpcji płodów oraz wady rozwojowe (opóźnienie kostnienia, zaburzenia sercowo-naczyniowe, wady rozwojowe żeber i ogona). Całkowita resorpcja płodów wystąpiła po narażeniu szczurów na 2-metoksyetanol o stężeniu 620 lub 930 mg/m3. Działanie embriotoksyczne i teratogenne 2- -metoksyetanolu na zwierzęta obserwowano także po narażeniu zwierząt drogą dożołądkową, dożylną i na skórę. 2-Metoksyetanol dobrze wchłania się w drogach oddechowych (retencja w płucach wynosi około 80%). Ciekły 2-metoksyetanol bardzo dobrze wchłania się przez skórę, a jego metabolizm przebiega dwoma drogami przez enzymatyczne utlenianie do 2-metoksyacetaldehydu i kwasu 2-metoksyoctowego(2-MAA) oraz przez demetylację do glikolu etylenowego, który utlenia się do kwasu glikolowego. Głównym metabolitem związku jest kwas 2-metoksyoctowy wydalany z moczem. Półokres eliminacji 2-metoksyetanolu i jego metabolitów wynosi około 77 h, co wskazuje na możliwość kumulacji związku w organizmie.Podstawą do wyliczenia wartości najwyższego dopuszczalnego stężenia (NDS) było hematotoksyczne działanie 2-metoksyetanolu obserwowane u pracowników narażonych na działanie związku w przemyśle. Na tej podstawie zaproponowano zmniejszenie obowiązującej w Polsce wartości najwyższego dopuszczalnego stężenia (NDS) z 15 do 3 mg/m3. Wartość dopuszczalnego stężenia w materiale biologicznym (DSB) ustalono na poziomie 8 mg kwasu 2-metoksyoctowego (MAA)/g kreatyniny w moczu zebranym pod koniec drugiego tygodnia pracy. Normatyw oznakowano literami „Sk” (wchłania się przez skórę) i „Ft” (substancja działająca toksycznie na płód). Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh), gdyż związek nie wykazywał działania drażniącego w badaniach na zwierzętach.
2-Methoxyethanol (2-ME) is a colorless liquid with a mild odor. 2-Methoxyethanol is used as a solvent in many products (e.g. dyes, resins, lacquers, inks, nitrocellulose, acethylcellulose). It has been used as a perfume fixative and a jet fuel de-icing additive. Industries using 2-methoxyethanol has included the printing, painting, furniture finishing, coating, and leather industries. 2-ME is used in photolithographic and photographic processes. No people have been expose in Poland to 2-methoxyethanol concentration in the air exceeding the TWA value which is 15 mg/m3 (data from 2000-2007). Only limited information on the acute toxic effects of 2-methoxyethanol in human is available. These information come largely from case reports with accidental poisoning. In cases of unintentional ingestion of 2-ME (dose of 100 ml/man) muscular weakness, ataxia, nausea, vomiting and mental confusion and metabolic acidosis were apparent. Haematologic abnormalities have been noted in human (26% of workers) after inhalation exposure on 2-ME at the concentration of 12 mg/m3. Epidemiologic studies have demonstrated that 2-methoxyethanol at the concentration of 17 ÷ 26 mg/m3 caused reproductive and fetotoxic effects. The oral LD50 values for 2-methoxyethanol in rats were between 2370 and 3400 mg/kg of body weight. Short-term and repeated administration of 2-ME to animals resulted in haematologic abnormalities and reproduction consequences. There was no evidence for mutagenic, genotoxic and carcinogenic activity of 2-methoxyethanol. No observed embriotoxicity and teratogenic effects after exposure pregnant female rats and mice on 2-methoxyethanol (during organogenesis) at the concentration 31 mg/m3. Fetotoxic effects on rodent embryos after inhalation on 2-ME at the concentration 155 ÷ 930 mg/m3 have been reported. 2-Methoxyethanol is readily absorber through the skin, lungs, and gastrointestinal tract. The metabolic transformation of 2-ME gives two primary metabolites: 2-methoxyacetic acid (MAA) and 2-methoxyacethyl glicine. A major portion of a dose is eliminated as a MAA in urine. The excretion of MAA is slow, with a half-life of about 77 h in man. The MAC-TWA values was calculated on the basis of haematotoxic effect in human. The Expert Group for Chemical Agents suggest reducing the MAC-TWA (OEL) value accepted in Poland from 15 mg/m3 to 3 mg/m3. No MAC-STEL has been recommended. The value of BEI is proposed (8 mg of 2-methoxyacetic acid per gram of urinary creatinine). Notation “Sk” (substance absorbed through the skin) and “Ft” (fetotoxicity) are recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2010, 4 (66); 93-139
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
2,2-Bis(4-hydroksyfenylo)- propan – pyły
2,2-Bis(4-hydroxyphentyl)propane
Autorzy:
Szymańska, J.A.
Frydrych, B.
Powiązania:
https://bibliotekanauki.pl/articles/137252.pdf
Data publikacji:
2006
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
bisfenol A
działanie drażniące
wartości NDS i NDSCh
bisphenol A
irritation
Opis:
2,2-Bis(4-hydroksyfenylo)propan (bisfenol-A, BPA) jest substancją stałą, występuje w postaci płatków lub kryształków, ma delikatny zapach fenolu. Otrzymywany jest w reakcji fenolu z acetonem, przebiegającej w niskim pH, wysokiej temperaturze i z udziałem katalizatorów. Związek ten znalazł zastosowanie w produkcji różnego rodzaju żywic, środków uniepalniających i jako fungicyd. Narażenie zawodowe na BPA może być związane z jego produkcją i stosowaniem. W dostępnym piśmiennictwie nie znaleziono informacji o zatruciach samobójczych lub przypadkowych, spowodowanych przyjęciem bisfenolu-A drogą pokarmową lub przez skórę. Jedyna informacja o działaniu toksycznym BPA po krótkim czasie narażenia dotyczy narażenia ludzi drogą inhalacyjną. Osoby narażone uskarżały się na gorzki smak w ustach, ból głowy i nudności. Długotrwałe narażenie na BPA może powodować powstawanie dermatoz. Toksyczność ostra BPA dla zwierząt jest mała. Wartość DL50 tej substancji mieści się w granicach 1,6÷5,2 g/kg masy ciała. Głównym objawem działania toksycznego BPA po podaniu dużych dawek królikom było podrażnienie oczu i skóry o różnym stopniu nasilenia. U myszy i szczurów obserwowano depresję OUN i przekrwienie bierne różnych narządów wewnętrznych. Wielokrotne inhalacyjne narażenie szczurów na BPA powodowało wystąpienie odwracalnych zmian w górnych drogach oddechowych. Hiperplazja nabłonka górnych dróg oddechowych wystąpiła przy stężeniach 50-150 mg/m3. Stężenie 10 mg/m3, przy którym nie obserwowano zmian, przyjęto jako wartość NOAEL. Toksyczność przewlekła była badana na kilku gatunkach zwierząt – myszach, szczurach i psach. Podanie dożołądkowe BPA powodowało przede wszystkim zahamowanie przyrostu masy ciała w porównaniu z grupą kontrolną, zwiększenie masy wątroby, a także zaburzenia oddychania, odwodnienie, biegunki i śmierć. W dostępnym piśmiennictwie nie ma danych na temat rakotwórczego działania BPA u ludzi. Dane na temat takiego działania u zwierząt dotyczą jednego eksperymentu. Przeprowadzony on został na myszach i szczurach obu płci. Narażenie trwające 103 tygodnie nie wykazało żadnych zmian świadczących o działaniu kancerogennym BPA. Negatywne wyniki uzyskano również w testach dotyczących działania mutagennego. Według wielu autorów główne działanie toksyczne BPA polega na szkodliwym wpływie tej substancji na rozrodczość. Jest to związane z mechanizmem działania BPA. Na podstawie badań in vitro stwierdzono, że BPA łączy się z receptorami estrogenowymi. Jednak dane dotyczące działania embriotoksycznego i wpływu na rozrodczość nie są jednoznaczne. Bisfenol-A w organizmie zwierząt jest metabolizowany do glukoronidu i w tej postaci wydalany z moczem. Główną drogą wydalania jest jednak kał – tą drogą wydala się (bez względu na drogę podania) w postaci niezmienionej 50÷80% podanej dawki. Wartość NDS bisfenolu-A na poziomie 5 mg/m3 (pył) ustalono na podstawie działania toksycznego związku na nabłonek górnych dróg oddechowych zwierząt doświadczalnych. Wartość NDSCh bisfenolu-A ustalono na poziomie 10 mg/m3. Normatywy oznakowano symbolem „I” (substancja o działaniu drażniącym).
2,2-Bis (4-hydroxyphentyl) propane (Bisphenol-A, BPA) is a solid substance found in the form of flakes or crystals of delicate phenol odour. It is obtained in the reaction of phenol with acetone, at low pH, at high temperature and with catalysts. This compound is used in the production of different kinds of resins, fire retardants and as fungicide. Occupational exposure to BPA can be associated with its production and application. In the available literature there are no data on suicidal or accidental intoxication caused by application of bisphenol-A through the alimentary tract or by skin. The only information on the toxic action of BPA after short exposure concerns only subjects exposed by inhalation. These subjects complained of a bitter taste in the mouth, headache and nausea. Long-term exposure to BPA may cause the development of dermatoses. Acute toxicity of BPA in animals is low. The DL50 value of this substance is within the limit of 1.6-5.2 g/kg b.w. Exposure of rabbits to high doses of BPA resulted in eye and skin irritation of different intensity. In mice and rats PNS depression and passive hyperaemia of various internal organs were observed. Repeated inhalatory exposure of rats to BPA resulted in reversible lesions in upper airways. Hyperplasia of upper airway epithelium was observed at the concentrations 50-150 mg/m3. The concentration of 10 mg/m3, when changes were not observed, was accepted as a NOAEL value. Chronic toxicity was investigated in a few animal species: mice, rats and dogs. Intragastric administration of BPA caused, first of all, inhibition of the increase of body weight as compared to the control group, increase in liver mass, breathing disorders, dehydration, diarrhea and death. In the available literature there is no on the carcinogenic activity of BPA in humans. The data on such activity in animals were found only in one experiment. Exposure lasting 103 weeks did not demonstrate any changes proving carcinogenic activity of BPA. Negative results were also obtained in tests estimating mutagenic activity. According to numerous authors, the main toxic action of BPA lies in the harmful effect of this substance on reproduction. It is associated with the mechanism of BPA action. Basing on in vitro studies BPA was found to bind with estrogenic receptors; however, data concerning embriotoxic action and the effect on reproduction are not explicit. Bisphenol-A is metabolised in animal bodies to glucoronide and in this form it is eliminated with urine. However, faeces are the main route of elimination – in this way (regardless of the way of administration) 50-80% of the dose is excreted in an unchanged form. Bisphenol-A MAC value at the level of 5 mg/m3 was established on the basis of the toxic action of the compound on upper airway epithelium of laboratory animals. The bispheno-A MAC (STEL) value was determined at the level of 10 mg/m3. The standard values were marked “I” – a substance of irritating activity.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2006, 3 (49); 101-117
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Brom
Bromine
Autorzy:
Szymańska, J.A.
Bruchajzer, E.
Powiązania:
https://bibliotekanauki.pl/articles/137272.pdf
Data publikacji:
2006
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
brom
działanie drażniące
oczy
skóra
układ oddechowy
NDS
NDSCh
bromie
iritation
eyes
skin
mucous membranes
Opis:
Brom jest brązowoczerwoną, dymiącą cieczą o ostrym, charakterystycznym zapachu. Na skalę przemysłową otrzymuje się go przez działanie silnych utleniaczy na bromki. Brom stosuje się m.in. do: syntezy barwników, środków wybielających, związków zmniejszających palność, produkcji farb, atramentów, związków stosowanych w fotografice, substancji do produkcji gazów bojowych i farmaceutyków. Narażenie przemysłowe na pary bromu może występować podczas produkcji i stosowania związków zawierających brom m.in. w rolnictwie, podczas dezynfekcji oraz w przemyśle chemicznym. Zatrucia ostre ludzi bromem zdarzały się tylko w czasie awarii lub wypadków podczas pracy. Narażenie na działanie bromu o stężeniu 6500 mg/m3 powoduje gwałtowną śmierć ludzi. Najwięcej danych o skutkach przewlekłego narażenia na pary bromu pochodzą z obserwacji poczynionych u ludzi narażonych inhalacyjnie w środowisku pracy. W czasie przemysłowego narażenia na pary bromu o stężeniu 0,5 mg/m3 nie obserwowano żadnego skutku działania bromu na organizm człowieka. Przyjmuje się, że maksymalne stężenia, na jakie mogą być narażeni ludzie w środowisku pracy wynoszą 0,65 ÷ 1 mg/m3 (0,1 ÷ 0,15 ppm). Brom o stężeniu 1 mg/m3 w powietrzu może powodować nieznaczne podrażnienie oczu (łzawienie). Praca w narażeniu na brom o większym stężeniu może objawy działania drażniącego nasilać i prowadzić do ciężkich napadów duszności. Badania epidemiologiczne zatruć bromem pochodzą z obserwacji poczynionych po jednorazowym narażeniu około 25 000 ludzi, które było wynikiem awarii w zakładzie chemicznym w Genewie. Skutki działania toksycznego bromu stwierdzono jednak tylko u 91 osób. Objawy te obserwowano po narażeniu na brom o stężeniu 1,3 ÷ 3,25 mg/m3 w powietrzu. Dane eksperymentalne na temat toksyczności par bromu są ograniczone i pochodzą zwykle sprzed ponad 100 lat. Wartość CL50 dla myszy i szczurów wynosi 1100 ÷ 4875 mg/m3 w zależności od czasu narażenia. W dostępnym piśmiennictwie nie ma danych o odległych skutkach działania par bromu. Brom wchłania się przez płuca, układ pokarmowy i skórę. W warunkach środowiska pracy największe znaczenie ma narażenie inhalacyjne, zaś dla populacji generalnej – pobranie związku z dietą. T1/2 dla bromu w surowicy wynosi 12 ÷ 14 dni. Brom gromadzi się w tkankach w postaci bromków i jest z nich wydalany wolno. Mechanizm działania toksycznego par bromu jest związany z jego przemianą w bromowodór lub wypieraniem innych halogenów z połączeń w związkach endogennych. Z wieloletnich obserwacji wynika, że podczas narażenia ludzi na brom o stężeniu poniżej 0,7 mg/m3 (0,1 ppm) nie stwierdzano skutków jego działania toksycznego. Wartość najwyższego dopuszczalnego stężenia (NDS) obowiązująca w Polsce od 1998 r. również wynosi 0,7 mg/m3 (0,1 ppm). Na podstawie danych z piśmiennictwa i informacji o braku przekroczeń normy w Polsce, proponujemy pozostać przy obecnie obowiązującej wartości NDS bromu. Wartość OEL równa 0,7 mg/m3 obowiązuje także w państwach Unii Europejskiej. Proponujemy przyjąć stężenie 1,4 mg/m3 za wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) bromu.
Bromine (CAS Register No. 7726-95-6) is a brown or red liquid with a characteristic odour. Bromine is mainly used in the manufacture of dyes, inks, flame retardants, pharmaceuticals and chemical warfare agents. Occupational exposure to bromine may occur during the production and the application of bromine compounds and during other industrial activities.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2006, 2 (48); 31-49
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Octan 2-metoksyetylu
2-Methoxyethyl acetate
Autorzy:
Szymańska, J.A.
Frydrych, B
Powiązania:
https://bibliotekanauki.pl/articles/137288.pdf
Data publikacji:
2010
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
octan 2-metoksyetylu
efekt hematologiczny
narażenie zawodowe
NDS
2-methoxyethyl acetate
haematologic effects
occupational exposure
BEI
Opis:
Octan 2-metoksyetylu jest bezbarwną cieczą o przyjemnym eterycznym zapachu i gorzkim smaku. Związek ten nie występuje naturalnie, lecz jest otrzymywany w reakcji estryfikacji metoksyetanolu. Na świecie octan 2-metoksyetylu jest stosowany głównie do produkcji: farb, barwników, lakierów, tuszy oraz jako rozpuszczalnik: wosków, olejów, gumy, żywicy, octanu celulozy oraz nitrocelulozy. W Polsce (wg danych Instytutu Medycyny Pracy w Łodzi) w 2000 r. na stężenia ponadnormatywne octanu 2-metoksyetylu (NDS – 25 mg/m3; NDSCh – 100 mg/m3) było narażonych 12 osób, natomiast wg danych Głównej Inspekcji Sanitarnej w 2007 r. takich przekroczeń nie stwierdzono. Chemiczna budowa i właściwości fizykochemiczne związku sugerują, że substancja ta jest wchłaniana do organizmu różnymi drogami i szybko rozmieszczana w tkankach. Octan 2-metoksyetylujest szybko hydrolizowany do 2-metoksyetanolu przez esterazę karboksylową obecną w: nabłonku nosa, wątrobie, nerkach, płucach i we krwi. Główną drogą metabolizmu 2-metoksyetanolu jest oksydacja przez metoksyacetaldehyd do kwasu metoksyoctowego (MAA) wydalanego z moczem. Dożołądkowe, inhalacyjne i naskórne narażenie zwierząt laboratoryjnych na działanie octanu 2-metoksyetanolu powodowało: zmniejszenie masy grasicy, śledziony i jąder, zmniejszenie liczby czerwonych i białych ciałek krwi oraz liczby płytek, a także zmniejszenie hematokrytu, hemoglobiny, liczby komórek w szpiku kostnym oraz zwiększenie liczby niedojrzałych granulocytów. Octan 2-metoksyetylu nie wykazuje działania mutagennego ani rakotwórczego, wpływa natomiast na układ rozrodczy, czego skutkiem jest zaburzenie procesu spermatogenezy manifestujące się jako oligospermia lub azoospermia. Mechanizm działania toksycznego octanu 2-metoksymetylu jest związany z metabolitem powstałym na drodze przemian 2-metoksyetanolu – kwasem 2-metoksyoctowym (MAA), dlatego zaproponowano przyjęcie dla octanu 2-metoksyetylu takiej samej wartości najwyższego dopuszczalnego stężenia (NDS) równej 1 ppm, co odpowiada stężeniu octanu na poziomie 5 mg/m3. Za wartość dopuszczalnego stężenia w materiale biologicznym (DSB) przyjęto stężenie 8 mg kwasu 2-metoksyoctowego (MAA)/g kreatyniny w moczu zebranym pod koniec drugiego tygodnia pracy. Normatyw oznakowano literami „Sk” (wchłania się przez skórę) i „Ft” (substancja działająca toksycznie na płód). Brak jest podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) octanu 2-metoksymetylu, gdyż związek nie wykazywał działania drażniącego w badaniach przeprowadzonych na zwierzętach.
2-Methoxyethyl acetate (2-MEA) is a colorless liquid with a pleasant odor. 2-MEA does not occur naturally, it is produced from 2-methoxyethanol by esterification. 2-Methoxyethyl acetate is used in photographic films, lacquers, and textile printing and as a solvent for waxes, oils, various gums and resins, cellulose acetate, and nitrocellulose. The chemical structure and solubility properties of 2-MEA suggest that this substance is efficiently absorbed by all routes and rapidly distributed to the different tissues. Next it is rapidly and extensively hydrolysed to 2-methoxyethanol by carboxyl esterases in the nasal epithelium, liver, kidneys, lungs, and blood. The dominating metabolic pathway of 2-methoxyethanol is oxidation via methoxyacetaldehyde to methoxyacetic (MAA), which is eliminated in urine. Repeated short-term exposures to 2-MEA via gavage, skin application, or inhalation have similar effects in several animal species including reduced thymus, spleen and testes weight, lower counts of white and red blood cells and platelets, lower hematocrit, haemoglobin levels and bone marrow cellularity, higher numbers of immature granulocytes. 2-MEA has been negative in all genotoxicity and carcinogenicity studies but it has shown reproductive toxicity in laboratory animals. The proposed MAC-TWA (OEL) value was calculated at 5 mg/m3. No MAC-STEL has been recommended. The value of BEI is proposed (8 mg of 2-methoxyacetic acid per gram of urinary creatinine). Notation “Sk” (substance absorbed through the skin) and “Ft” (fetotoxicity) are recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2010, 4 (66); 141-158
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Parafina stała – dymy
Paraffin
Autorzy:
Szymańska, J.A.
Frydrych, B.
Powiązania:
https://bibliotekanauki.pl/articles/137959.pdf
Data publikacji:
2006
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
parafina
najwyższe dopuszczalne stężenie (NDS)
paraffin
Opis:
Parafina jest mieszaniną węglowodorów nasyconych stałych otrzymywanych z ropy naftowej. Jest to biała lub bezbarwna masa, bez zapachu i smaku, nierozpuszczalna w wodzie i etanolu, natomiast rozpuszczalna w: benzenie, chloroformie i eterze. Parafinę oczyszcza się na drodze chemicznej, odbarwia przy użyciu odpowiednich adsorbentów i frakcjonuje za pomocą destylacji i rekrystalizacji, uzyskując woski o różnych właściwościach. Parafina jest używana do wyrobu świec, impregnowania zapałek, wyrobu papierów woskowanych, opakowań zabezpieczających żywność, pasty do podłóg, izolatorów elektrycznych oraz do ekstrakcji olejków eterycznych z kwiatów. Parafina znalazła również zastosowanie w medycynie jako środek obliteracyjny oraz w operacjach plastycznych. Dane literaturowe na temat toksyczności parafiny są nieliczne i niejednoznaczne. Większość autorów klasyfikuje tę substancję jako nietoksyczną. Z drugiej jednak strony stwierdza się, że przebywanie w pomieszczeniach, gdzie stężenia dymów parafiny sięgają 0,6 ÷1 mg/m3 (narażenie drogą inhalacyjną) powoduje odczucie określane jako dyskomfort. Najczęstszym skutkiem narażenia człowieka na działanie parafiny (iniekcja) opisywanym w literaturze są zmiany klasyfikowane jako ziarniniaki. Dawki śmiertelne i toksyczne parafiny mieszczą się w granicach 120 ÷ 660 mg/kg masy ciała. Skutki toksycznego działania parafiny zaobserwowano jedynie u szczurów szczepu F-344. Narażenie 60-dniowe szczurów drogą pokarmową na parafinę w dawce 2% (20 000 ppm) spowodowało znaczny wzrost aktywności enzymów wątrobowych, pojawienie się wakuoli wypełnionych parafiną w komórkach Browicza-Kupffera oraz wzrost stężenia parafiny w hepatocytach. Zmian takich nie obserwowano u badanych szczurów szczepu Sprague-Dawley i u psów. W dostępnym piśmiennictwie nie ma wiarygodnych danych na temat rakotwórczego działania parafiny. Nieznane są również losy parafiny w organizmie. Uważa się jednak, że parafina nie ulega wchłanianiu ani trawieniu. Wartość najwyższego dopuszczalnego stężenia (NDS) dla dymów parafiny ustalono na podstawie informacji uzyskanych z zakładów pracy, w których stwierdzano stężenia parafiny 0,6 ÷ 2 mg/m3. Osoby narażone na stężenia parafiny 0,6 ÷ 1 mg/m3 uskarżały się na dyskomfort i nudności. W innym zakładzie pracy narażeni na parafinę o stężeniu 2 mg/m3 nie zgłaszali żadnych dolegliwości. Za wartość NDS dymów parafiny przyjęto stężenie 2 mg/m3. Nie ma podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) parafiny.
Paraffin is a mixture of saturated solid hydrocarbons obtained from petroleum. It is a white or colourless mass, odourless, tasteless, insoluble in water and ethanol but soluble in benzene, chloroform and ether. Paraffin is purified chemically, decolourised with the use of proper adsorbents and fractionated through distillation and recrystallisation obtaining waxes of different properties.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2006, 3 (49); 133-143
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
2-Toliloamina
2-Tolyloamine
Autorzy:
Szymańska, J. A
Frydrych, B
Powiązania:
https://bibliotekanauki.pl/articles/138281.pdf
Data publikacji:
2009
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
2-toliloamina
narażenie zawodowe
działanie rakotwórcze
NDS
DSB
2-tolyloamine
occupational exposure
carcinogenicity
OEL
BEI
Opis:
2-Toliloamina (o-toluidyna, CAS: 95-53-4) jest bezbarwną lub bladożółtą oleistą cieczą przypo-minającą zapachem anilinę i otrzymywaną przez redukcję nitrotoluenu. 2-Toliloaminę stosuje się m.in. do wytwarzania barwników, chemikaliów, farmaceutyków i pestycydów. Narażenie zawodowe może być związane z jej produkcją i wykorzystaniem. Skutkiem ostrego zatrucia 2-toliloaminą są: methemoglobinemia, hematuria, podrażnienie nerek i pęcherza moczowego oraz zatrzymanie moczu. Według danych z piśmiennictwa 30-minu-towe narażenie na 2-toliloaminę o stężeniu 176 mg/m3 jest przyczyną wystąpienia objawów ostrego zatrucia, natomiast narażenie na 2-toliloaminę o stężeniu 44 mg/m3 było przyczyną wystąpienia objawów zatrucia określanych jako łagodne. Zatruciom przewlekłym towarzyszy: wzrost stężenia methemoglobiny we krwi, hematuria oraz zmiany w pęcherzu moczowym prowadzące do powstania raka tego narządu. W dostępnym piśmiennictwie nie znaleziono informacji na temat badań epidemiologicznych, w których zawodowe narażenie dotyczyłoby wyłącznie 2-toliloaminy. Toksyczność ostra 2-toliloaminy dla zwierząt jest mała. Wartość DL50 tej substancji mieści się w granicach 150 ÷ 840 mg/kg masy ciała. Jednorazowe narażenie zwierząt na 2-toliloaminę w dużych dawkach powoduje: wzrost poziomu methemoglobiny, sinicę, anemię i zmiany w śledzionie. Wielokrotne narażenie szczurów na 2-toliloaminę podawaną drogą dożołądkową po-wodowało: zahamowanie przyrostu masy ciała zwierząt, zmiany w błonie śluzowej pęcherza moczowego (proliferacja, wakuolizacja, mataplazja), tworzenie depozytów barwnika w śle-dzionie, wątrobie i nerkach oraz zwiększoną liczbę padłych zwierząt. Objawom tym towarzy-szyły: methemoglobinemia, sinica, erytropenia i retikulocytoza. Na podstawie wyników badań mutagenności 2-toliloaminy z użyciem testów bakteryjnych wykazano, że związek ten wykazuje działanie mutagenne jedynie w obecności frakcji S9. Wyniki badań nad genotoksycznością dowodzą, że 2-toliloamina jest związkiem genotoksycznym powodującym m.in. mutacje genowe, aberracje chromosomowe, wymianę chromatyd siostrzanych i pękanie nici DNA. 2-Toliloamina indukuje powstawanie takich nowotworów u zwierząt, jak: naczyniaki, mięsaki, włókniakomięsaki, włókniakogruczolaki i brodawczaki różnych narządów. Na podstawie wy-ników badań nad rakotwórczym działaniem 2-toliloaminy związek ten został zaklasyfikowany w Unii Europejskiej do kategorii 2. W Polsce 2-toliloamina jest zaliczana do 2. kategorii rako-twórczości. 2-Toliloamina wchłania się przez skórę i płuca. Metabolizowana jest na drodze hydroksylacji i N-acetylacji. Powstałe metabolity (głównie 4-amino-m-krezol i N-acetylo-amino-m-krezol) ule-gają sprzęganiu z kwasem siarkowym oraz glukuronowym i w tej postaci są wydalane z moczem. Mechanizm działania toksycznego 2-toliloaminy jest związany z zahamowaniem aktywności monooksygenaz i zaburzeniem procesu detoksykacji. Powstałe w wyniku metabolizmu hy-droksylowe pochodne wykazują działanie methemoglobinotwórcze. Narażenie zawodowe na 2-toliloaminę w połączeniu z innymi aminami aromatycznymi powo-duje raka pęcherza moczowego. Zaproponowano przyjęcie stężenia 3 mg/m3 2-toliloaminy za wartość najwyższego dopuszczalnego stężenia (NDS) związku. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia (NDSCh) 2-toliloaminy. Za wartość dopuszczalnego stężenia w materiale biologicznym (DSB) przyjęto poziom methemoglobiny (MetHb) wynoszący 2%. Proponuje się oznakowanie związku literami: „Sk”, „I” oraz Rakotw. Kat. 2.
2-Tolyloamine (o-toluidine) is a light yellow liquid, slightly soluble in water and soluble in al-cohol and ether. o-Toluidine and its hydrochloride have been mostly used as intermediates in manufacturing a variety of dyes, rubber chemicals, pharmaceuticals and pesticides. o-Toluidine is been absorbed via the respiratory tract and skin. The body rapidly metaboliz-es o-toluidine and the metabolites are excreted largely in the urine. Oral LD50 in animals is 150-840 mg/kg bw. In animal studies, short-term administration of o-toluidine results in cyano-sis, reticulocytosis, anaemia, methaemoglobinaemia, bladder haemorrhage and vacuolization and proliferation of bladder epithelial cells. Chronic exposure results in incidences of vascular tumors (hemangiosarcomas and hemangiomas of the abdominal viscera and urinary bladder). o-Toluidine (hydrochloride) is carcinogenic in mice and rats after oral administration, produc-ing a variety of malignant tumors. o-Toluidine and its hydrochloride produces increased num-bers of chromosomal aberrations, sister-chromatid exchanges and unscheduled DNA. Human exposure to chemicals including o-toluidine in the dyestuffs industry and more recently in the rubber industry has been reported to be associated with an increased incidence of bladder cancer. The European Union has classified o-toluidine as category 2, i.e., a substance considered as car-cinogenic to humans. This classification is obligatory in Poland, too. The Expert Group has recommended an OEL-TWA of 3 mg/m3 and a biological exposure index (BEI) of 2% methaemoglobinaemia.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2009, 2 (60); 149-173
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Eter diizopropylowy
Diisopropyl ether
Autorzy:
Szymańska, J. A
Bruchajzer, E.
Powiązania:
https://bibliotekanauki.pl/articles/137983.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
eter diizopropylowy
działanie drażniące
układ oddechowy
NDS
NDSCh
diisopropyl ether
irritation
mucous membranes
MAC (TWA)
MAC (STEL)
Opis:
Eter diizopropylowy jest cieczą o lekko ostrym zapachu. Otrzymuje się go w wyniku reakcji kwasu siarkowego z alkoholem izopropylowym. Stosowany jest jako rozpuszczalnik tłuszczów, olejów, wosków, żywic, gum, etylocelulozy, farb, lakierów oraz jako dodatek do paliw. Narażenie na eter diizopropylowy występuje w przemyśle chemicznym (tworzyw sztucznych, gumowym), kosmetycznym, farmaceutycznym. Eter diizopropylowy jest związkiem o bardzo małej toksyczności ostrej: DL50 dla zwierząt laboratoryjnych (po podaniu dożołądkowym) wynosi 4600÷11600 mg/kg, zaś CL50 – 121 000÷162 000 mg/m3. Śmierć zwierząt – poprzedzona typowymi objawami znieczulenia ogólnego – spowodowana była porażeniem układu oddechowego. Jednorazowe, krótkotrwałe narażenie inhalacyjne ludzi na eter diizopropylowy o stężeniach 1250÷2100 mg/m3 nie powodowało niekorzystnych zmian, zaś narażenie na stężenie 3350 mg/m3 wywołało działanie drażniące na błony śluzowe oczu, nosa i gardła. Po wielokrotnym (20-dniowym) narażeniu inhalacyjnym świnek morskich, królików i małp na eter di izopropylowy o stężeniach 4400÷13 000 mg/m3 nie obserwowano objawów działania toksycznego związku. Zwiększenie stężenia do 41700 mg/m3 (z jednoczesnym skróceniem czasu narażenia do 1 h/dzień) powodowało u małpy zmiany w obrazie krwi, podniecenie, a następnie objawy działania depresyjnego na ośrodkowy układ nerwowy (OUN). Stężenie 41 700 mg/m3 dla małpy przyjęto za wartość LOAEL, zaś dla królików i świnki morskiej – za wartość NOAEL. Po wielokrotnym (10-dniowym) narażeniu królików na eter diizopropylowy o stężeniu 12 5000 mg/m3 zanotowano krótkotrwałe znieczulenie, sinicę, spadek masy ciała i zmiany w obrazie krwi. Te same warunki narażenia u małpy powodowały po 20-30 minutach znieczulenie ogólne, powolny i nieregularny oddech oraz zmiany w obrazie krwi. Podprzewlekłe (90-dniowe), inhalacyjne narażenie szczurów na eter diizopropylowy o stężeniu 2100 mg/m3 nie powodowało żadnych zmian. Narażenie zwierząt na substancję o stężeniu 14 900 mg/m3 wywołało tylko wzrost masy wątroby i nerek u samców, zaś po zwiększeniu stężenia do 32 600 mg/m3 podobne efekty zanotowano u samic. Eter diizopropylowy nie wykazywał działania mutagennego, klastogennego i rakotwórczego. Nie działał także embriotoksycznie, teratogennie i nie wpływał na rozrodczość. Eter diizopropylowy jest bardzo szybko wchłaniany przez płuca lub przewód pokarmowy (po połknięciu) do krwi. Większość eteru diizopropylowego jest wydalana w postaci niezmienionej przez płuca z powietrzem wydychanym. Mechanizm toksycznego działania eteru diizopropylowego może być podobny do działania eteru dietylowego i może być związany z depresyjnym wpływem na OUN, co w krańcowych przypadkach prowadzi do śmierci spowodowanej zahamowaniem czynności ośrodka oddechowego w mózgu. W dostępnym piśmiennictwie nie znaleziono informacji na temat działania łącznego eteru diizopropylowego z innymi związkami. Po analizie danych literaturowych, a także z uwagi na ograniczone dane na temat toksycznego działania eteru diizopropylowego na ludzi oraz brak doniesień o niekorzystnych skutkach związanych z przekroczeniem obowiązujących w Polsce normatywów higienicznych (a właściwie niewystępowanie takich przekroczeń), proponujemy pozostać przy obowiązującej wartości NDS, która wynosi 1000 mg/m3. Istniejące dane nie dają podstaw do określenia wartości NDSCh i DSB eteru diizopropylowego.
Diisopropyl ether (CAS No 108-20-3) is a liquid with a characteristic odour. This substance is used as a solvent for oils, fats, waxes, resins, dyes and paints. It is used to produce varnishes, inks, in synthesis of fuels, cosmetics and pharmaceuticals. In animals diisopropyl ether is characterized by low acute toxicity: oral LD50 values in rats ranged from 4600 to 11600 mg/kg, and LC50 from 121000 to 162000 mg/m3. Death was due to respiratory failure caused by depressant action. Acute exposure of human to diisopropyl ether at a concentration of 3350 mg/m3 reported irritation of the eyes and nose. After repeated 20-day exposure of animals to diisopropyl ether at concentrations between 4000 and 13000 mg/m3 there were no toxic effects. Monkeys exposed repeatedly (20 days, 1 h daily) at a vapor concentration of 41700 mg/m3 exhibited intoxication and depression of the central nervous system. This concentration is LOAEL for monkeys and NOAEL for rabbits and guinea pigs. 90-day exposure of rats to diisopropyl ether at a concentration of 14900 mg/m3 caused an increase in liver and kidney weight in males. These effects in females were noted at a concentration of 32600 mg/m3. Diisopropyl ether did not display mutagenic, clastogenic and cancerogenic effects. There was no evidence of fetotoxic anf teratogenic effects. Diisopropyl ether is rapidly absorbed by the blood from the lungs or the gastrointestinal tract. A major portion of a dose is eliminated through the lungs. Experimental data suggest that there is no basis for the verification of the MAC value (1000 mg/m3) for diisopropyl ether. No STEL and BEI values have been proposed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 1 (51); 39-55
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Eter pentabromodifenylowy – mieszanina izomerów
Autorzy:
Szymańska, J. A
Bruchajzer, E
Powiązania:
https://bibliotekanauki.pl/articles/137719.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
eter pentabromodifenylowy
narażenie zawodowe
toksyczność
tarczyca
NDS
pentabromodiphenyl ether
occupational exposure
toxicity
thyroid
Opis:
Eter pentabromodifenylowy (PentaBDE) jest bursztynowym, przezroczystym płynem, który w temperaturze pokojowej występuje w postaci półpłynnej. Związek ma znaczenie przemysłowe i otrzymuje się go przez bromowanie eteru difenylowego. Najczęstszą postacią, w jakiej występował eter pentabromodifenylowy, były mieszanki techniczne (handlowe). Składały się one ze związków o różnym stopniu ubromowania. Substancja znajduje się na liście priorytetowej do opracowania wartości dopuszczalnych przez SCOEL. Eter pentabromodifenylowy jest substancją zmniejszającą palność. Najczęściej stosowano ją przy produkcji elastycznych pianek poliuretanowych: do produkcji mebli, w przemyśle samochodowym i lotniczym. Dodawano ją również do: żywic fenolowych i epoksydowych, nienasyconych poliestrów, tkanin oraz używano w materiałach do pokrywania dachów i kabli. Eter pentabromodifenylowy, ze względu na swoje właściwości fizykochemiczne (m.in. słabą rozpuszczalność w wodzie, stabilność termiczną i chemiczną oraz zdolność do kumulacji i biomagnifikacji w łańcuchu pokarmowym, zaliczono do, tzw. Trwałych zanieczyszczeń organicznych (persistent organic pollutants, POPs). Eter pentabromodifenylowy do środowiska mógł się dostawać w wyniku: produkcji, użytkowania i składowania odpadów oraz recyklingu urządzeń zawierających ten związek. Stężenia związku w powietrzu hali, w której demontowano sprzęt komputerowy, osiągały wartość 0,0026 μg/m3. Dotychczas nie odnotowano żadnych przypadków zatrucia ludzi eterami pentabromodifenylowymi. Eter pentabromodifenylowy w doświadczeniach na zwierzętach wykazywał małą toksyczność ostrą. Średnie dawki śmiertelne (DL50) dla szczurów po podaniu dożołądkowym wahały się w granicach 2650 ÷ 7400 mg/kg masy ciała. U szczurów przed padnięciem obserwowano: zmniejszenie aktywności ruchowej, senność, drżenia mięśniowe, nasiloną motorykę przewodu pokarmowego i biegunkę. Podobne skutki toksyczne obserwowano u zwierząt, zarówno w doświadczeniach krótkoterminowych, jak i po podawaniu wielokrotnym. Najbardziej istotne znaczenie mają zmiany czynnościowe w: wątrobie, układzie hormonalnym i nerwowym. Pierwsze objawy tego typu (zwiększenie względnej masy wątroby i indukcja enzymów mikrosomalnych w wątrobie) po jednorazowym podaniu związku stwierdzono u szczurów dopiero po podaniu dawki 300 mg/kg, a u myszy – dawki 100 mg/kg. Niekorzystny wpływ związku na funkcję tarczycy zanotowano po jednorazowym podaniu myszom dawki 4 mg/kg m.c. W badaniach krótkoterminowych (po 4 - 14 dniach podawania dożołądkowego), oprócz działań zaobserwowanych po narażeniu jednorazowym (wpływ na wątrobę, tarczycę i układ nerwowy), stwierdzono także działanie immunotoksyczne, które notowano po 14-dniowym podawaniu szczurom i myszom dawki 18 mg/kg/dzień związku. Pierwsze objawy niekorzystnego wpływu na tarczycę (spadek stężenia T4 i T3 w surowicy) zanotowano po 4-krotnym podaniu dawki 3 mg/kg/dzień związku. Po dawkach 10 ÷ 300 mg/kg/dzień skutek ten się pogłębiał. Ponadto występowały objawy świadczące o zaburzeniach funkcji wątroby (zależne od dawki zwiększenie względnej masy wątroby, wzrost aktywności O-dealkilazy 7-etoksyrezorufiny (EROD) i O-dealkilazy 7-pentoksyrezorufiny (PROD) w wątrobie. Zmniejszenie stężenia T4 w surowicy notowano także po 14-dniowym podawaniu eteru pentabromodifenylowego szczurom i myszom. Skutek ten był zależny od podawanej dawki związku (18 ÷ 56 mg/kg/dzień szczurom i 18 ÷ 72 mg/kg/dzień u myszom). Czternastodniowe podawanie myszom dawki 18 mg/kg/dzień eteru pentabromodifenylowego powodowało także niekorzystne działanie na wątrobę. Takie objawy, jak: zwiększenie względnej masy wątroby i indukcja enzymów mikrosomalnych w wątrobie (m.in. EROD, PROD), nasilały się wraz z wielkością dawki (do 72 mg/kg/dzień). Po wielokrotnym (28- i 90-dniowym) dożołądkowym narażeniu szczurów na dawki od 0,82 do 1,77 mg/kg/dzień eteru pentabromodifenylowego nie stwierdzono żadnych skutków toksycznych. Po 28-dniowym podawaniu szczurom dawki 2,47 mg/kg/dzień eteru pentabromodifenylowego zanotowano spadek stężenia T4 w surowicy i zwiększenie aktywności PROD w wątrobie. Objawy te nasilały się wraz ze wzrostem dawki (do 200 mg/kg/dzień) związku. Po narażeniu podprzewlekłym (90-dniowym) na dawkę 3,53 mg/kg/dzień eteru pentabromodifenylowego zaobserwowano indukcję enzymów mikrosomalnych w wątrobie. Skutek ten narastał ze wzrostem dawki (do 14,12 mg/kg/dzień). Po trzymiesięcznym narażeniu szczurów na dawkę 2 mg/kg/dzień eteru pentabromodifenylowego stwierdzono zmniejszenie stężenia T4 w surowicy oraz przypadki zwyrodnienia i martwicy hepatocytów u samic. Po dawkach 10 lub 100 mg/kg/dzień związku zanotowano ponadto wyraźne działanie porfirogenne, zależne od dawki. Eter pentabromodifenylowy nie wykazywał działania genotoksycznego, embriotoksycznego i teratogennego. W EPA zaliczono eter pentabromodifenylowy do klasy D, czyli związków nieklasyfikowanych jako kancerogen dla ludzi. Polibromowane difenyloetery (PBDEs), w tym również eter pentabromodifenylowy, działają niekorzystnie na: układ nerwowy, dokrewny i odpornościowy. Związki te powodują także indukcję enzymów mikrosomalnych w wątrobie, co może prowadzić do zmian w metabolizmie ksenobiotyków, zaś pobrane w dużych ilościach powodują zmiany w wątrobie. Eter pentabromodifenylowy może oddziaływać z cytozolowym receptorem Ah, co jest związane z indukcją enzymów mikrosomalnych, głównie CYP 1A1 i CYP 1A2. Wskaźnik EROD jest wskaźnikiem wiązania z receptorami węglowodorów aromatycznych (AhR). Wykazano, że zarówno niektóre hydroksylowe polibromowane difenyloetery, jak i PBDEs są agonistami receptorów estrogennych i stymulują w warunkach in vitro aktywność lucyferazy za pośrednictwem receptora estrogennego (ER). PBDEs mogą powodować zmiany w układzie cholinergicznym. Mają również wpływ na homeostazę hormonów tarczycy, wpływając tym samym na rozwój ośrodkowego układu nerwowego. Podstawą do proponowanej wartości najwyższego dopuszczalnego stężenia (NDS) są dane w piśmiennictwie dotyczące niekorzystnego działania związku na funkcjonowanie wątroby i tarczycy. Za podstawę do wyliczenia wartości NDS zaproponowano przyjęcie wartości NOAEL równej 0,82 mg/kg/dzień z eksperymentu 28-dniowego wykonanego na szczurach, którym eter pentabromodifenylowy podawano dożołądkowo. Po określeniu wartości współczynników niepewności zaproponowano przyjęcie stężenia 0,7 mg/m3 eteru pentabromodifenylowego za wartość najwyższego dopuszczalnego stężenia (NDS). Brak jest podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) eteru pentabromodifenylowego
Pentabromodiphenyl ether (pentaBDE) is an amber colour, transparent liquid, which occurs at room temperature in a semi-liquid form. This compound is obtained by bromination of diphenyl ether. The most common form in which pentabromodiphenyl ethers occurred, were the technical (commercial) mixtures. These consisted of compounds of varying degrees of brominated. The substance is listed as a priority to develop the limit values by SCOEL. Pentabromodiphenyl ether is use as a flame retardant. Frequently used it in the production of flexible polyurethane foams: the production of furniture, automotive and aerospace industries. It also added to phenolic and epoxy resins, unsaturated polyesters, fabrics and materials used in electric cables. Pentabromodiphenyl ether, due to their physicochemical properties (such as a weak water solubility, thermal and chemical stability) and the ability to accumulate and biomagnification in the food chain, belongs to POPs (persistent organic pollutants). Pentabromodiphenyl ether has been found in the environment as a result of the use and recycling of the equipment containing this compound. The concentration of 0.0026 mg/m3 in the air was detected in the hall where computer equipment were dismantled. So far, there have been no cases of poisoning people. Pentabromodiphenyl ether in experiments on animals showed low acute toxicity. The mean lethal dose (LD50) for rats after oral administration ranged 2650-7400 mg/kg body weight. In rats were observed: decrease in motor activity, lethargy, muscle tremors, severe gastrointestinal motility and diarrhea. Similar toxic effects were observed in animals, both in the short-term experiments, and after repeated dosing. The most important changes were observed in the liver, and in functional of endocrine and nervous system. The first symptoms of this type (increase of the relative liver weight and induction of the microsomal enzymes in the liver) were found after a single administration of the compound in rats only after the dose of 300 mg/kg and in mice – at the dose of 100 mg/kg. The adverse effect of the compound on thyroid function was observed in mice after single dose administration of 4 mg/kg. In short-term exposure (4-14 days of the intragastrical administration), in addition to the activities observed after a single exposure (effect on the liver, thyroid and nervous system), were also found immunotoxic effects, which were recorded after 14 days in rats and mice administered this compound at the doses of 18 mg/kg/day. The first symptoms of adverse effects on the thyroid (a decrease in serum T4 and T3) was observed after four days exposure at the dose of 3 mg/kg/day. At doses of 10-300 mg/kg/day, these effects are intensified. In addition, there were signs of the disturbance of liver function (dose dependent increase in relative liver weight, increase of the activity of O-dealkylase 7- etoxyresorufin (EROD) and O-dealkylase 7-pentoxyresorufin (PROD) in liver). The reduction of the T4 levels in serum were recorded after 14-day administration of pentabromodiphenyl ether to rats and mice. This effect was dependent on the administered dose of the compound (18-56 mg/kg/day in rats and 18-72 mg/kg/day in mice). Fourteen days of exposure to pentabromodiphenyl ether at the dose 18 mg/kg/day caused also in adverse effects in the liver: increase in relative liver weight and induction of microsomal enzymes in the liver (including EROD, PROD), intensified with dose (up to 72 mg/kg/day.) After repeated (28- and 90-day) intragastrical exposure of rats to pentabromodiphenyl ether at the doses from 0.82 to 1.77 mg/kg/day did not show any toxic effects. After 28 days of the administration of pentaBDE at the dose 2.47 mg/kg/day were observed the decrease T4 levels in the serum and increase PROD activity in the liver. These symptoms enhanced with increasing doses (up to 200 mg/kg/day) of the compound. After subchronic exposure (90 days) on pentabromodiphenyl ether at the dose 3.53 mg/kg/day, the microsomal enzyme induction was observed in the liver. This effect was growing with increasing doses (up to 14.12 mg/kg/day). After a three-month exposure of rats at a dose of 2 mg/kg/day were found the reduction of the T4 levels in the serum and increase of the cases of degeneration and necrosis of hepatocytes in females. After the doses of 10 or 100 mg/kg/day was also observed the porphyrogenic activity (dosedependent). Pentabromodiphenyl ether was not genotoxic, embryotoxic and teratogenic. The EPA included pentabromodiphenyl ether to Class D, this compound not classified as a carcinogen for humans. Polybrominated diphenyl ethers (PBDEs), including pentabromodiphenyl ether, act negatively on the: nervous, endocrine and immune systems. These compounds also cause the induction of hepatic microsomal enzymes, which may lead to changes in the metabolism of xenobiotics, and collected in large quantities cause changes in the liver. Pentabromodiphenyl ether can interact with the cytosolic Ah receptor, which is associated with induction of microsomal enzymes, especially CYP 1A1 and CYP 1A2. The EROD is an indicator of the binding of the aromatic hydrocarbon receptor (AhR). Both, PBDEs and their hydroxyleted derivatives are an estrogenic agonists and stimulate the in vitro luciferase activity through estrogenic receptor (ER). PBDEs can cause changes in the cholinergic system. These compounds can also affect the homeostasis of thyroid hormones, thus affecting on the development of the central nervous system. The basis for the proposed value of the maximum allowable concentration (MAC) are data in the literature regarding the adverse effects of the compound on the functioning of the liver and thyroid. To calculate the value NDS has been proposed the adoption of the NOAEL value as the dose 0.82 mg/kg/day with a 28-day experiment performed on rats given intragastrically pentabromodiphenyl ether. After determining the coefficients of uncertainty has been proposed the adoption of the concentration of 0.7 mg/m3 for the value of the maximum allowable concentration (MAC, TWA). No MAC-STEL values have been established.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 2 (72); 75-109
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ftalan dimetylu – frakcja wdychana
Dimethyl phathalate – inhable fraction
Autorzy:
Szymańska, J. A
Bruchajzer, E.
Powiązania:
https://bibliotekanauki.pl/articles/137828.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
ftalan dimetylu
narażenie zawodowe
toksyczność
frakcja wdychalna
NDS
dimethyl phthalate
occupational exposure
toxicity
inhalable fraction
MAC (TWA)
Opis:
Ftalan dimetylu (DMP) jest bezbarwną, oleistą cieczą o słabym zapachu aromatycznym, którą stosuje się w przemyśle chemicznym (np.: do produkcji barwników, lakierów) i kosmetycznym (np.: perfumy, płyny do kąpieli) oraz jako plastyfikator (np. dla octanu celulozy) i środek owadobójczy. Według danych Głównego Inspektora Sanitarnego ani w 2007 r., ani w 2010 r. nie odnotowano zatrudnionych na stanowiskach pracy, na których ftalan dimetylu przekraczał najwyższe dopuszczalne stężenie (NDS) - 5 mg/m czy najwyższe dopuszczalne stężenie chwilowe (NDSCh) - 10 mg/m Estry ftalanów są łatwo wchłaniane z: przewodu pokarmowego, jamy otrzewnej, płuc i skóry. Ftalan dimetylu po wchłonięciu jest metabolizowany do monometylowej pochodnej i wolnego kwasu ftalowego, które są wydalane głównie z moczem. Pomimo powszechnego stosowania ftalanu dimetylu (głównie jako repelent), w dostępnym piśmiennictwie, poza pojedynczymi przypadkami, nie ma informacji na temat toksycznego działania tego związku na ludzi. Na podstawie wyników badań toksyczności ostrej na zwierzętach wykazano dużą rozpiętość w wartościach median dawek śmiertelnych. Na podstawie tych danych ftalan dimetylu jest uważany za związek o malej toksyczności ostrej. Najczęstszymi objawami, występującymi po wielo krotnym narażeniu różnych gatunków zwierząt na ftalan dimetylu podawany różnymi drogami, były: zmniejszenie przyrostu masy ciała, zwiększenie względnej i bezwzględnej masy wątroby, uszkodzenie wątroby i nerek. Wyniki testów przeprowadzonych w warunkach in vitro i in vivo wskazują, że ftalan dimetylu nie wykazuje działania rnutagennego i genotoksycznego. Prenatalne narażenie zwierząt na ftalan dimetylu podawany różnymi drogami wykazało w większości przypadków, że związek ten nie działa embriotoksycznie. Również na podstawie wyników uzyskanych w doświadczeniach dotyczących działania rakotwórczego ftalan dimetylu nie jest uważany za substancję o działaniu kancerogennym. Wartość TLV-TWA ftalanu dimetylu na poziomie 5 mg/m3 ma, wg ACGIH, zapewnić dostateczną ochronę ludzi przed potencjalnymi ogólnoustrojowymi skutkami narażenia. W dostępnym piśmiennictwie nie znaleziono informacji dających podstawę do zmiany obowiązującej wartości najwyższego dopuszczalne- go stężenia (NDS) ftalanu dimetylu, również brak jest danych uzasadniających istnienie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh).Zaproponowano, aby stężenie 5 mg/m ftalanu dimetylu przyjąć za wartość NDS dla frakcji wdychalnej substancji. Ze względu na słabe wchłanianie ftalanu dimetylu przez skórę oraz słabe jej działanie fetotoksyczne nie ma podstaw do oznakowania substancji literami: „Sk” - substancja wchłania się przez skórę oraz „Ft” - substancja działająca toksycznie na płód. Nie ma także podstaw do wyznaczenia wartości NDSCh oraz dopuszczalnego stężenia w materiale biologicznym (DSB) ftalanu dimetylu.
Dimethyl phthalate (DMP) is a colorless, oily liquid with a faint arornatic odor.It is used in the chemical industry (manufacture of dyes, varnishes) and cosmetics (perfume, bubble bath, etc.) as a plasticizer (e.g., cellulose acetale) and an insecticide. According to the Chief Sanitary Inspector in 2010, nobody was employed at workstations where phthalate concentrations exceeded 5 mg/m (TWA) and 10 mg/m (STEL). Phthalate esters are readily absorbed horn the gastrointestinal tract, peritoneal cavity, lung and skin. DMP after absorption is metabolized to a monomethyl derivative and free phthalic acid, which are excreted mainly in the urine. Despite the wide use of DMP (mainly as a repellent), in the available literature, there are only few reports on the toxic effects of this com pound on humans. Acute toxicity studies in animals show a large spread in the values of DMP lethal doses. Based on these data, DMP is considered to be a compound of low acute toxicity. The most common symptoms that occur after repeated exposure of animals to DMP are I reduced weight gain, increased relative and absolute liver weight, liver and kidney damage. The results of experiments carried out in vitro and in vivo indicate that DMP does not show genotoxicity. Prenatal exposure of animals re veiled that DMP is not embryo toxic. Also on the basis of results obtained frorn experiments on carcinogenicity, DMP is not regarded as a carcinogenic substance.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2013, 4 (78); 47-67
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies