Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "MRI images" wg kryterium: Wszystkie pola


Wyświetlanie 1-8 z 8
Tytuł:
Classification of Parkinsons disease in brain MRI images using Deep Residual Convolutional Neural Network (DRCNN)
Autorzy:
Praneeth, Puppala
Sathvika, Majety
Kommareddy, Vivek
Sarath, Madala
Mallela, Saran
Vani, K. Suvarna
Chkrabarti, Prasun
Powiązania:
https://bibliotekanauki.pl/articles/30148251.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
Parkinson’s disease
Deep Residual Convolutional Neural Network
deep learning
health control
Opis:
In our aging culture, neurodegenerative disorders like Parkinson's disease (PD) are among the most serious health issues. It is a neurological condition that has social and economic effects on individuals. It happens because the brain's dopamine-producing cells are unable to produce enough of the chemical to support the body's motor functions. The main symptoms of this illness are eyesight, excretion activity, speech, and mobility issues, followed by depression, anxiety, sleep issues, and panic attacks. The main aim of this research is to develop a workable clinical decision-making framework that aids the physician in diagnosing patients with PD influence. In this research, the authors propose a technique to classify Parkinson’s disease by MRI brain images. Initially, the input data is normalized using the min-max normalization method, and then noise is removed from the input images using a median filter. The Binary Dragonfly algorithm is then used to select features. In addition, the Dense-UNet technique is used to segment the diseased part from brain MRI images. The disease is then classified as Parkinson's disease or health control using the Deep Residual Convolutional Neural Network (DRCNN) technique along with the Enhanced Whale Optimization Algorithm (EWOA) to achieve better classification accuracy. In this work, the Parkinson's Progression Marker Initiative (PPMI) public dataset for Parkinson's MRI images is used. Indicators of accuracy, sensitivity, specificity and precision are used with manually collected data to evaluate the effectiveness of the proposed methodology.
Źródło:
Applied Computer Science; 2023, 19, 2; 125-146
1895-3735
2353-6977
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Registration of CT and MRI brain images
Autorzy:
Kuczyński, Karol
Mikołajczak, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/764427.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Źródło:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica; 2003, 1, 1
1732-1360
2083-3628
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Registration and normalization of MRI/PET images
Autorzy:
Rumiński, J.
Suchowirski, M.
Powiązania:
https://bibliotekanauki.pl/articles/333799.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rejestracja obrazu
normalizacja obrazu
obrazowanie metodą rezonansu magnetycznego
obrazowanie parametryczne
image registration
image normalization
PET
MRI
parametric imaging
Opis:
Parametric imaging is more and more popular in dynamic brain studies. It enables to quantitatively or semi-quantitatively estimate physiological state and processes in brain. Parametric images represent spatial distribution of parameter values calculated for chosen mathematical model of the process or object. This work compares different methods of geometrical transformations for image registration and normalization. Appropriate method for image registration and normalization (in reference to atlases) is extremely important for common visualization of structural and parametric images in MRI and PET studies. Rigid and elastic geometrical transformations are implemented and compared. Additionally Delaunay triangulation and image morphing methods are used. Manual and proposed automatic registration and normalization methods are presented and compared based on MRI/PET and Talairach atlas images. Concluding, the proposed automatic image normalization method is accurate and using the combination of Delaunay and morphing methods can produce even better results.
Źródło:
Journal of Medical Informatics & Technologies; 2005, 9; 159-166
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Usage of artificial neural networks in the diagnosis of knee joint disorders
Zastosowanie sztucznych sieci neuronowych w diagnozie schorzeń stawu kolanowego
Autorzy:
Witkowski, Konrad
Wieczorek, Mikołaj
Powiązania:
https://bibliotekanauki.pl/articles/27315456.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
classification
MRI images
Resnet
Alexnet
klasyfikacja
zdjęcia MRI
Opis:
Following article address the issue of automatic knee disorder diagnose with usage of neural networks. We proposed several hybrid neuralnet architectures which aim to successfully classify abnormalityusing MRI (magnetic resonance imaging) images acquired from publicly available dataset. To construct such combinations of modelswe used pretrainedAlexnet, Resnet18 and Resnet34 downloaded from Torchvision. Experiments showedthat for certain abnormalities our models can achieve up to 90% accuracy.
Niniejszy artykuł porusza temat automatycznej diagnozy uszkodzenia stawu kolanowego z zastosowaniem sieci neuronowych. Zaproponowanokilka hybrydowych sieci neuronowych, które podjęły próbę poprawnej klasyfikacji nieprawidłowości wykorzystując zdjęcia rezonansu magnetycznego pochodzące z publicznie dostępnego zbioru. Do konstrukcjikombinacji sieci skorzystanoz pretrenowanych modeli (Alexnet, Resnet18, Resnet34) pobranychz Torchvision. Eksperyment pokazał, że dla klasyfikacji niektórych schorzeń modele osiągnęły nawet 90% skuteczności.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 4; 11--14
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative Analysis and Fusion of MRI and PET Images based on Wavelets for Clinical Diagnosis
Autorzy:
Sebastian, Jinu
King, Gnana
Powiązania:
https://bibliotekanauki.pl/articles/2200731.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
MRI
PET
multimodality medical image fusion
wavelet transform
brain tumor
Alzheimer’s disease
YUV color space
Opis:
Nowadays, Medical imaging modalities like Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Tomography (SPECT), and Computed Tomography (CT) play a crucial role in clinical diagnosis and treatment planning. The images obtained from each of these modalities contain complementary information of the organ imaged. Image fusion algorithms are employed to bring all of this disparate information together into a single image, allowing doctors to diagnose disorders quickly. This paper proposes a novel technique for the fusion of MRI and PET images based on YUV color space and wavelet transform. Quality assessment based on entropy showed that the method can achieve promising results for medical image fusion. The paper has done a comparative analysis of the fusion of MRI and PET images using different wavelet families at various decomposition levels for the detection of brain tumors as well as Alzheimer’s disease. The quality assessment and visual analysis showed that the Dmey wavelet at decomposition level 3 is optimum for the fusion of MRI and PET images. This paper also compared the results of several fusion rules such as average, maximum, and minimum, finding that the maximum fusion rule outperformed the other two.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 4; 867--873
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Brain atrophy progress detection in MR images
Autorzy:
Kuczyński, K.
Stęgierski, R.
Siczek, M.
Powiązania:
https://bibliotekanauki.pl/articles/333021.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
wymiar fraktalny
obrazowanie metodą rezonansu magnetycznego
klasyfikacja medyczna obrazu
brain atrophy detection
fractal dimension
MRI
medical image classification
Opis:
Alzheimer's, Parkinson's and other dementive diseases currently pose an important social problem. High brain atrophy level is one of the most important symptoms of these disorders, but it also may result from normal ageing processes. The purpose of the presented research is to design methods that support detection of dementia symptoms in radiological images. The proposed framework consists of image registration procedure, brain extraction and tissue segmentation and the exact analysis of image series (fractal and volumetric properties).
Źródło:
Journal of Medical Informatics & Technologies; 2010, 16; 187-192
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatic detection of brain tumors using genetic algorithms with multiple stages in magnetic resonance images
Autorzy:
Annam, Karthik
Kumar, Sunil G.
Babu, Ashok P.
Domala, Narsaiah
Powiązania:
https://bibliotekanauki.pl/articles/27314266.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
MRI brain tumor
GLCM
SURF
genetic optimization
advanced machine learning
Opis:
The field of biomedicine is still working on a solution to the challenge of diagnosing brain tumors, which is now one of the most significant challenges facing the profession. The possibility of an early diagnosis of brain cancer depends on the development of new technologies or instruments. Automated processes can be made possible thanks to the classification of different types of brain tumors by utilizing patented brain images. In addition, the proposed novel approach may be used to differentiate between different types of brain disorders and tumors, such as those that affect the brain. The input image must first undergo pre-processing before the tumor and other brain regions can be separated. Following this step, the images are separated into their respective colors and levels, and then the Gray Level Co-Occurrence and SURF extraction methods are used to determine which aspects of the photographs contain the most significant information. Through the use of genetic optimization, the recovered features are reduced in size. The cut-down features are utilized in conjunction with an advanced learning approach for the purposes of training and evaluating the tumor categorization. Alongside the conventional approach, the accuracy, inaccuracy, sensitivity, and specificity of the methodology under consideration are all assessed. The approach offers an accuracy rate greater than 90%, with an error rate of less than 2% for every kind of cancer. Last but not least, the specificity and sensitivity of each kind are higher than 90% and 50%, respectively. The usage of a genetic algorithm to support the approach is more efficient than using the other ways since the method that the genetic algorithm utilizes has greater accuracy as well as higher specificity.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2022, 16, 4; 36--43
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis and comparison of symmetry based lossless and perceptually lossless algorithms for volumetric compression of medical images
Autorzy:
Chandrika, B. K.
Aparna, P.
Sumam, D. S.
Powiązania:
https://bibliotekanauki.pl/articles/333936.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
bilateral symmetry
human visual system
MRI image
CT image
just noticeable distortion
perceptually lossless compression
symetria dwustronna
obraz MRI
rezonans magnetyczny
obrazowanie metodą rezonansu magnetycznego
obraz CT
tomografia komputerowa
zniekształcenie
Opis:
Modern medical imaging techniques produce huge volume of data from stack of images generated in a single examination. To compress them several volumetric compression techniques have been proposed. Performance of these compression schemes can be improved further by considering the anatomical symmetry present in medical images and incorporating the characteristics of human visual system. In this paper a volumetric medical image compression algorithm is presented in which perceptual model is integrated with a symmetry based lossless scheme. Symmetry based lossless and perceptually lossless algorithms were evaluated on a set of three dimensional medical images. Experimental results show that symmetry based perceptually lossless coder gives an average of 8.47% improvement in bit per pixel without any perceivable degradation in visual quality against the lossless scheme.
Źródło:
Journal of Medical Informatics & Technologies; 2015, 24; 147-154
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies