- Tytuł:
- A Constructive Characterization of Vertex Cover Roman Trees
- Autorzy:
-
Martínez, Abel Cabrera
Kuziak, Dorota
Yero, Ismael G. - Powiązania:
- https://bibliotekanauki.pl/articles/32083833.pdf
- Data publikacji:
- 2021-02-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
Roman domination
outer-independent Roman domination
vertex cover
vertex independence
trees - Opis:
- A Roman dominating function on a graph G = (V(G), E(G)) is a function f : V(G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The Roman dominating function f is an outer-independent Roman dominating function on G if the set of vertices labeled with zero under f is an independent set. The outer-independent Roman domination number γoiR(G) is the minimum weight w(f) = Σv∈V(G)f(v) of any outer-independent Roman dominating function f of G. A vertex cover of a graph G is a set of vertices that covers all the edges of G. The minimum cardinality of a vertex cover is denoted by α(G). A graph G is a vertex cover Roman graph if γoiR(G) = 2α(G). A constructive characterization of the vertex cover Roman trees is given in this article.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2021, 41, 1; 267-283
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki