- Tytuł:
- Hydraulic Fracturing; Environmental Issue
- Autorzy:
- Khyade, Vitthalrao B.
- Powiązania:
- https://bibliotekanauki.pl/articles/1191444.pdf
- Data publikacji:
- 2016
- Wydawca:
- Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
- Tematy:
-
Fraccing
Environmental Risk
Aquatic Ecosystem
Proppant
Leakoff - Opis:
- Environment is the integrated system, each and every factor of which is dependent on the other. Marine ecosystems are very important for the overall health of both marine and terrestrial environments. According to the World Resource Center, coastal habitats alone account for approximately 1/3 of all marine biological productivity, and estuarine ecosystems (i.e., salt marshes, seagrasses, mangrove forests) are among the most productive regions on the planet. In addition, other marine ecosystems such as coral reefs, provide food and shelter to the highest levels of marine diversity in the world. Marine ecosystems usually have a large biodiversity and are therefore thought to have a good resistance against invasive species. However, exceptions have been observed, and the mechanisms responsible in determining the success of an invasion are not yet clear. Changes among the factors an any ecosystem are permissible up to some extent. Induced hydraulic fracturing (hydrofracturing, also commonly known as fracking or fraccing) is a mining technique in which a liquid (in most cases water) is mixed with sand and chemicals and the resultant mixture injected at high pressure into a wellbore. This creates small fractures in the deep rock formations, typically less than 1mm wide, along which gas, petroleum and brine may migrate to the well. Hydraulic pressure is removed from the well, then small grains of proppant (sand or aluminium oxide) hold these fractures open once the rock achieves equilibrium. The technique is very common in wells for shale gas, tight gas, tight oil, and coal seam gas and hard rock wells. This well stimulation is usually conducted once in the life of the well and greatly enhances fluid removal and well productivity, but there has been an increasing trend towards multiple hydraulic fracturing as production declines. The first experimental use of hydraulic fracturing was in 1947, and the first commercially successful applications were in 1949. As of 2012, 2.5 million hydraulic fracturing jobs have been performed on oil and gas wells worldwide, more than one million of them in the United States. Proponents of hydraulic fracturing point to the economic benefits from the vast amounts of formerly inaccessible hydrocarbons the process can extract. Opponents of hydraulic fracturing point to environmental risks, including contamination of ground water, depletion of fresh water, contamination of the air, noise pollution, the migration of gases and hydraulic fracturing chemicals to the surface, surface contamination from spills and flow-back, and the possible health effects of these. There are increases in seismic activity, mostly associated with deep injection disposal of flowback and produced brine from hydraulically fractured wells. For these reasons hydraulic fracturing has come under international scrutiny, with some countries protecting it, and others suspending or banning it. Some of those countries, including most notably the United Kingdom, have recently lifted their bans, choosing to focus on regulation instead of outright prohibition. The European Union is in the process of applying regulation to permit this to take place.
- Źródło:
-
World Scientific News; 2016, 40; 58-92
2392-2192 - Pojawia się w:
- World Scientific News
- Dostawca treści:
- Biblioteka Nauki