Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Jindal, Rajni" wg kryterium: Wszystkie pola


Wyświetlanie 1-1 z 1
Tytuł:
Mining Non-Functional Requirements using Machine Learning Techniques
Autorzy:
Jindal, Rajni
Malhotra, Ruchika
Jain, Abha
Bansal, Ankita
Powiązania:
https://bibliotekanauki.pl/articles/2060908.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
requirement engineering
text mining
non-functional requirements
machine learning
receiver operating characteristics
Opis:
Background: Non-Functional Requirements (NFR) have a direct impact on the architecture of the system, thus it is essential to identify NFRs in the initial phases of software development. Aim: The work is based on extraction of relevant keywords from NFR descriptions by employing text mining steps and thereafter classifying these descriptions into one of the nine types of NFRs. Method: For each NFR type, keywords are extracted from a set of pre-categorized specifications using Information-Gain measure. Then models using 8 Machine Learning (ML) techniques are developed for classification of NFR descriptions. A set of 15 projects (containing 326 NFR descriptions) developed by MS students at DePaul University are used to evaluate the models. Results: The study analyzes the performance of ML models in terms of classification and misclassification rate to determine the best model for predicting each type NFR descriptions. The Naïve Bayes model has performed best in predicting “maintainability” and “availability” type of NFRs. Conclusion: The NFR descriptions should be analyzed and mapped into their corresponding NFR types during the initial phases. The authors conducted cost benefit analysis to appreciate the advantage of using the proposed models.
Źródło:
e-Informatica Software Engineering Journal; 2021, 15, 1; 85--114
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies