Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gocławski, J." wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Neural network segmentation of images from stained cucurbits leaves with colour symptoms of biotic and abiotic stresses
Autorzy:
Gocławski, J.
Sekulska-Nalewajko, J.
Kuźniak, E.
Powiązania:
https://bibliotekanauki.pl/articles/330961.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
segmentacja obrazu
przestrzeń koloru
przetwarzanie morfologiczne
progowanie obrazu
sztuczna sieć neuronowa
ochrona roślin
image segmentation
colour space
morphological processing
image thresholding
artificial neural network
WTA learning
Widrow-Hoff learning
Cucurbita species
plant stress
ROS detection
Opis:
The increased production of Reactive Oxygen Species (ROS) in plant leaf tissues is a hallmark of a plant's reaction to various environmental stresses. This paper describes an automatic segmentation method for scanned images of cucurbits leaves stained to visualise ROS accumulation sites featured by specific colour hues and intensities. The leaves placed separately in the scanner view field on a colour background are extracted by thresholding in the RGB colour space, then cleaned from petioles to obtain a leaf blade mask. The second stage of the method consists in the classification of within mask pixels in a hue-saturation plane using two classes, determined by leaf regions with and without colour products of the ROS reaction. At this stage a two-layer, hybrid artificial neural network is applied with the first layer as a self-organising Kohonen type network and a linear perceptron output layer (counter propagation network type). The WTA-based, fast competitive learning of the first layer was improved to increase clustering reliability. Widrow-Hoff supervised training used at the output layer utilises manually labelled patterns prepared from training images. The generalisation ability of the network model has been verified by K-fold cross-validation. The method significantly accelerates the measurement of leaf regions containing the ROS reaction colour products and improves measurement accuracy.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 3; 669-684
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An automatic segmentation method for scanned images of wheat root systems with dark discolourations
Autorzy:
Gocławski, J.
Sekulska-Nalewajko, J.
Gajewska, E.
Wielanek, M.
Powiązania:
https://bibliotekanauki.pl/articles/930018.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system korzeniowy
segmentacja
szkielet
klasteryzacja
root system image
segmentation
skeleton
root discolourations
fuzzy c-means clustering
Opis:
The analysis of plant root system images plays an important role in the diagnosis of plant health state, the detection of possible diseases and growth distortions. This paper describes an initial stage of automatic analysis-the segmentation method for scanned images of Ni-treated wheat roots from hydroponic culture. The main roots of a wheat fibrous system are placed separately in the scanner view area on a high chroma background (blue or red). The first stage of the method includes the transformation of a scanned RGB image into the HCI (Hue-Chroma-Intensity) colour space and then local thresholding of the chroma component to extract a binary root image. Possible chromatic discolourations, different from background colour, are added to the roots from blue or red chroma subcomponent images after thresholding. At the second stage, dark discolourations are extracted by local fuzzy c-means clustering of an HCI intensity image within the binary root mask. Fuzzy clustering is applied in local windows around the series of sample points on roots medial axes (skeleton). The performance of the proposed method is compared with hand-labelled segmentation for a series of several root systems.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2009, 19, 4; 679-689
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies