Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "GNSS Positioning Performance" wg kryterium: Wszystkie pola


Wyświetlanie 1-7 z 7
Tytuł:
GNSS positioning error change-point detection in GNSS Positioning Performance Modelling
Autorzy:
Filić, M.
Filjar, R.
Powiązania:
https://bibliotekanauki.pl/articles/117469.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Global Navigation Satellite System (GNSS)
positioning
Navigation and Timing (PNT)
GNSS Positioning Performance Modelling
GNSS Positioning Error Change-point Detection
GNSS Positioning Performance
GNSS Resilience
GNSS Utilisation Risk Mitigation
GNSS Positioning Performance Degradation
Opis:
Provision of uninterrupted and robust Positioning, Navigation, and Timing (PNT) services is essential task of Global Navigation Satellite Systems (GNSS) as an enabling technology for numerous technology and socio-economic applications, a cornerstone of the modern civilisation, a public goods, and an essential component of a national infrastructure. GNSS resilience may be accomplished only with complete understanding of the causes of GNSS positioning performance disruptions and degradations, presented in a form of applications- and scenarios-related models. Here the application of change-point detection methods is proposed and demonstrated in a selected scenario of a fast-developing ionospheric storm’s impact on GNSS positioning performance, as a novel contribution to forecasting GNSS positioning performance model development and GNSS utilisation risk mitigation.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 3; 575-579
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An SDR-based Study of Multi-GNSS Positioning Performance During Fast-developing Space Weather Storm
Autorzy:
Filić, M.
Filjar, R.
Ruotsalainen, L.
Powiązania:
https://bibliotekanauki.pl/articles/117597.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Global Navigation Satellite System (GNSS)
utilization of GNSS
Global Positioning System (GPS)
GLONASS
RTKLIB
multi-GNSS
space weather storm
GNSS SDR Receiver
Opis:
The understanding of the ionospheric effects on GNSS positioning performance forms an essential pre-requisite for resilient GNSS development. Here we present the results of a study of the effects of a fast-developing space weather disturbance on the positioning performance of a commercial-grade GPS+GLONASS receiver. Using experimentally collected pseudoranges and the RTKLIB, an open-source software-defined GNSS radio receiver operating in the simulation mode, we assessed GNSS positioning performance degradations for various modes of GNSS SDR receiver operation, and identified the benefits of utilisation of multi-GNSS and ionospheric error correction techniques.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2016, 10, 3; 395-400
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A method and a model for risk assessment of GNSS utilisation with a proof-of-principle demonstration for polar GNSS maritime applications
Autorzy:
Malić, E.
Sikirica, N.
Špoljar, D.
Filjar, R.
Powiązania:
https://bibliotekanauki.pl/articles/24201434.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
GNSS
GNSS Positioning Performance Degradation
assessment of risk
lonospheric delay
intelligent maritime traffic
maritime applications
polar region
polar navigation
Opis:
The GNSS positioning performance is commonly defined and described in terms unspecified to particular GNSS-based application. The approach causes difficulties to GNSS application developers, operators, and users, rendering the impact assessment of GNSS performance on the GNSS application Quality of Service (QoS) particularly difficult. Here the Probability of Occurrence (PoO) Model is introduced, which allows for a risk assessment of the probability for the GNSS positioning accuracy failure to meet the requirements of the particular GNSS-based application. The proposed PoO Model development procedure requires a large set of position estimation errors observations, which shall cover a range of classes of positioning environment (space weather, troposphere, multi-path etc.) disturbances affecting GNSS positioning accuracy. As result, the PoO Model becomes a tool that returns the probability of failure in meeting the positioning accuracy requirements of the GNSS applications considered, thus providing the input for a GNSS deployment risk assessment. The proposed PoO Model and its development procedure are demonstrated in the case of polar region positioning environment, with raw GNSS pseudorange observations taken at the International GNSS Service (IGS) Network reference station Iqualuit, Canada are used for the PoO Model development. The PoO Model proof-of-principle is then used to estimate the probability of the unmet required positioning accuracy for a number of polar maritime navigation applications. Manuscript concludes with a discussion of the PoO Model benefits and shortcomings, a summary of contribution, and intentions for the future research.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2023, 17, 1; 43--50
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A South Pacific Cyclone-caused GPS positioning errorand Its impact on remote oceanic island communities
Autorzy:
Filić, M.
Filjar, R.
Powiązania:
https://bibliotekanauki.pl/articles/116266.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Global Navigation Satellite System (GNSS)
South Pacific
tropical cyclones
Software-Defined Radio (SDR)
GPS positioning error
GNSS positioning performance
remote oceanic inland communities
GNSS resilience
Opis:
Satellite navigation gains importance in sustainable development of modern civilisation. With the increasing number of GNSS-based technology and socio-economic systems and services, satellite navigation has become an essential component of national infrastructure. This calls for novel requirements on GNSS positioning perfomance, and increasing need for resilient GNSS development. Here we examined the impact of rapidly developing tropical cyclone on GPS positioning performance degradation, and the resulting impact on oceanic non-navigation and navigation GPS applications. We presented the methodology for indirect simulation-based GPS positioning performance evaluation through utilisation of experimental GPS observations, GNSS Software-Defined Radio (SDR) receiver, and a statistical analysis and framework we developed in the R environment for scientific computing. We identified alteration of GPS positioning error components time series statistical properties, and discuss the potential impact on GPS-based services essential for remote oceanic island communities. Manuscript concludes with the summary of findings, proposal for recommendations on improved GNSS resilience, and an outline for future research.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2018, 12, 4; 663-670
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
EGNOS Status and Performance in the Context of Marine Navigation Requirements
Autorzy:
Cydejko, J.
Powiązania:
https://bibliotekanauki.pl/articles/116957.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Global Navigation Satellite System (GNSS)
EGNOS
Marine Navigation Requirements
positioning system
Satellite Positioning
Maritime Transport Requirements
Positioning Performance
Polish Coast
Opis:
The current status of EGNOS (December 2006) is described as Initial Operations Phase and the EGNOS Open Service is just about to be formally declared as available for non-safety of life service. In meanwhile the EGNOS Signal in Space is provided almost in its nominal level and delivering, when available, the nominal system performance. New positioning technologies, such as EGNOS in Europe, create a new quality in marine navigation and bring further improvement of the maritime transport safety. It may be expected that very soon EGNOS will find significant interest among the maritime community serving as the augmentation system in the maritime transport applications of GNSS. The paper discusses the EGNOS status and the expected EGNOS performance in the context of marine navigation requirements. The system performance analysis is backed with the study of the various field tests results where the EGNOS positioning performance was verified by author in the experimental way.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2008, 2, 3; 229-234
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling GPS positioning performance in Northwest Passage during extreme space weather conditions
Autorzy:
Špoljar, D.
Jukić, O.
Sikirica, N.
Lenac, K.
Filjar, R.
Powiązania:
https://bibliotekanauki.pl/articles/1841553.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Global Positioning System
Northwest Passage
Global Navigation Satellite System
Software Defined Radio (SDR)
GNSS SDR Receiver
GPS Position
Opis:
New shipping routes are emerging as a result of iceberg melting in polar regions, allowing for more efficient transport of people and goods. Opening of the Northwest Passage, the maritime route connecting Pacific Ocean with Atlantic Ocean through Arctic region, is considered such a development. The increasing transport exploitation of the Northwest Passage requires the quality assessment of maritime navigation aids for compliance with the established requirements. Here we contribute to the subject with addressing the polar commercial-grade GPS positioning performance in the Northwest Passage in the extreme positioning environment conditions during the massive 2003 space weather storm, a space weather event similar to the Carrington Storm of 1859, the largest space weather event recorded. The GPS positioning environment in the Northwest Passage during the Carrington-like storm in 2003 was reconstructed through the GNSS SDR receiver-post processing of the experimental GPS observations. The raw GPS dual-frequency pseudoranges and navigation messages were collected at the International GNSS Service (IGS) reference station at Ulukhaktok, Victoria Island, Canada. Pseudorange processing and GPS position estimation were performed in three scenarios of pre-mitigation of the ionospheric effects, known as the single major contributor GPS positioning error: (i) no corrections applied, (ii) Klobuchar-based corrected GPS positioning, and (iii) dual-frequency corrected GPS positioning. Resulting GPS positioning error vectors were derived as positioning error residuals from the known reference station position. Statistical properties of the northing, easting, and vertical components of the GPS positioning error vector were analyzed with a software developed in the R environment for statistical computing to select suitable methods for the GPS positioning error prediction model development. The analysis also identified the most suitable theoretical fit for experimental statistical distributions to assist the model development. Finally, two competitive GPS positioning error prediction models were developed, based on the exponential smoothing (reference) and the generalized regression neural networks (GRNN) (alternative) methods. Their properties were assessed to recommend their use as mitigation methods for adverse massive space weather effects in polar regions.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2021, 15, 1; 165-169
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The positioning performance of low-cost GNSS receivers in the Precise Point Positioning method
Autorzy:
Karabulut, Mustafa Fahri
Aykut, Nedim Onur
Akpınar, Burak
Topal, Güldane Oku
Çakmak, Zübeyir Bilal
Doran, Bilge
Dinar, Ahmet Anıl
Yiğit, Cemal Özer
Bezcioğlu, Mert
Zafer, Anıl
Powiązania:
https://bibliotekanauki.pl/articles/43852810.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
odbiornik GNSS
pozycjonowanie satelitarne
system nawigacji satelitarnej
low-cost
GNSS
PPP
OEM receiver
Opis:
Satellite-based positioning, which started being developed in the mid-1960s for military purposes, is now used in almost every area. For the studies single and/or double frequency receivers are used. The cost of a receiver and antenna couple that have capable of high coordinate accuracies ranges from $3000 to $15000. With the production of Original Equipment Manufacturer (OEM) receivers, the cost of satellite-based location determination decreases to approximately one in 10 for the civilian user compared to the operations performed with geodetic receivers and antennas. However, although these receivers collect data in multi-Global Navigation Satellite System (GNSS) and frequencies, the accuracy of the coordinate values estimated is not as high as geodetic receivers and antennas. Therefore, it is necessary to carry out an accuracy study to obtain information about which studies can be used in. In this study, measurements were made at the UZEL point located on the roof of the Yıldız Technical University Geomatics Engineering Department by using the ZED-F9P-02B OEM multi GNSS receiver and ANN-MB L1/L2 multi-band GNSS patch antenna. The performance of the test results has been examined by comparing the results from CSRS(Canadian Spatial Reference System)-PPP with the coordinates of the UZEL point. As a result of the comparison, the difference between the coordinate determined with collected 3.5 hr data and the coordinates of the UZEL point has been determined as – 1.4 cm, 2.8 cm, and 9.3 cm in the East, North, and Height directions, respectively.
Źródło:
Advances in Geodesy and Geoinformation; 2022, 71, 2; art. no. e29, 2022
2720-7242
Pojawia się w:
Advances in Geodesy and Geoinformation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies