Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Eigenfaces" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Porównanie skuteczności wybranych algorytmów rozpoznawania twarzy w przypadku zdjęć o niskiej jakości
Comparison of the effectiveness of selected face recognition algorithms for poor quality photos
Autorzy:
Gozdur, Jakub
Wiśniewski, Bartosz
Kopniak, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/98104.pdf
Data publikacji:
2019
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
rozpoznawanie
twarz
LBPH
Eigenfaces
Fisherfaces
recognition
face
Opis:
Celem artykułu jest określenie skuteczności popularnych algorytmów rozpoznawania twarzy w przypadku zdjęć o niskiej jakości. W trakcie pracy zostały opisane podstawowe algorytmy rozpoznawania twarzy takie jak LBPH, Eigenfaces i Fisherfaces. Do przeprowadzenia badań stworzono platformę badawczą wyposażona w oprogramowanie pozwalające testować dane i zbierać wyniki. Rezultaty badań pokazała, że jedynym algorytmem nadającym się do takich rozwiązań jest LBPH. Pozostałe natomiast nie uzyskały odpowiednio wysokiego współczynnika skuteczności.
The goal of the article is to determine the effectiveness of popular face recognition algorithms for poor quality photos. Basic facial recognition algorithms such as LBPH, Eigenfaces and Fisherfaces were described during the work. A research platform equipped with software allowing to test data and collect results was created. The results of the research showed that the only algorithm suitable for such solutions is LBPH. The others, however, did not achieve a sufficiently high effectiveness factor.
Źródło:
Journal of Computer Sciences Institute; 2019, 10; 67-70
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine learning system for automated blood smear analysis
Autorzy:
Grochowski, Michał
Wąsowicz, Michał
Mikołajczyk, Agnieszka
Ficek, Mateusz
Kulka, Marek
Wróbel, Maciej S.
Jędrzejewska-Szczerska, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/220750.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
optical microscopy
blood cells
biophotonics
image analysis
classification
eigenfaces
neural networks
decision support
nanodiamonds
bioimaging
Opis:
In this paper the authors propose a decision support system for automatic blood smear analysis based onmicroscopic images. The images are pre-processed in order to remove irrelevant elements and to enhancethe most important ones – the healthy blood cells (erythrocytes) and the pathologic ones (echinocytes). The separated blood cells are analysed in terms of their most important features by the eigenfaces method. The features are the basis for designing the neural network classifier, learned to distinguish between erythrocytes and echinocytes. As the result, the proposed system is able to analyse the smear blood images in a fully automatic way and to deliver information on the number and statistics of the red blood cells, both healthy and pathologic. The system was examined in two case studies, involving the canine and human blood, and then consulted with the experienced medicine specialists. The accuracy of classification of red blood cells into erythrocytes and echinocytes reaches 96%.
Źródło:
Metrology and Measurement Systems; 2019, 26, 1; 81-93
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies