Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Czeczot, Jacek." wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
Self-improving Q-learning based controller for a class of dynamical processes
Autorzy:
Musial, Jakub
Stebel, Krzysztof
Czeczot, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/1845515.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
process control
Q-learning algorithm
reinforcement learning
intelligent control
on-line learning
Opis:
This paper presents how Q-learning algorithm can be applied as a general-purpose self-improving controller for use in industrial automation as a substitute for conventional PI controller implemented without proper tuning. Traditional Q-learning approach is redefined to better fit the applications in practical control loops, including new definition of the goal state by the closed loop reference trajectory and discretization of state space and accessible actions (manipulating variables). Properties of Q-learning algorithm are investigated in terms of practical applicability with a special emphasis on initializing of Q-matrix based only on preliminary PI tunings to ensure bumpless switching between existing controller and replacing Q-learning algorithm. A general approach for design of Q-matrix and learning policy is suggested and the concept is systematically validated by simulation in the application to control two examples of processes exhibiting first order dynamics and oscillatory second order dynamics. Results show that online learning using interaction with controlled process is possible and it ensures significant improvement in control performance compared to arbitrarily tuned PI controller.
Źródło:
Archives of Control Sciences; 2021, 31, 3; 527-551
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Self-improving Q-learning based controller for a class of dynamical processes
Autorzy:
Musial, Jakub
Stebel, Krzysztof
Czeczot, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/1845530.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
process control
Q-learning algorithm
reinforcement learning
intelligent control
on-line learning
Opis:
This paper presents how Q-learning algorithm can be applied as a general-purpose selfimproving controller for use in industrial automation as a substitute for conventional PI controller implemented without proper tuning. Traditional Q-learning approach is redefined to better fit the applications in practical control loops, including new definition of the goal state by the closed loop reference trajectory and discretization of state space and accessible actions (manipulating variables). Properties of Q-learning algorithm are investigated in terms of practical applicability with a special emphasis on initializing of Q-matrix based only on preliminary PI tunings to ensure bumpless switching between existing controller and replacing Q-learning algorithm. A general approach for design of Q-matrix and learning policy is suggested and the concept is systematically validated by simulation in the application to control two examples of processes exhibiting first order dynamics and oscillatory second order dynamics. Results show that online learning using interaction with controlled process is possible and it ensures significant improvement in control performance compared to arbitrarily tuned PI controller.
Źródło:
Archives of Control Sciences; 2021, 31, 3; 527-551
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies