Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Cagan, S. C." wg kryterium: Wszystkie pola


Wyświetlanie 1-1 z 1
Tytuł:
Artificial neural networks in mechanical surface enhancement technique for the prediction of surface roughness and microhardness of magnesium alloy
Autorzy:
Cagan, S. C.
Maci, M.
Buldum, M. M.
Maci, C.
Powiązania:
https://bibliotekanauki.pl/articles/201157.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial neural network
prediction
ball burnishing
magnesium alloys
AZ91D
Opis:
The artificial neural network method (ANN) is widely used in both modeling and optimization of manufacturing processes. Determination of optimum processing parameters plays a key role as far as both cost and time are concerned within the manufacturing sector. The burnishing process is simple, easy and cost-effective, and thus it is more common to replace other surface finishing processes in the manufacturing sector. This study investigates the effect of burnishing parameters such as the number of passes, burnishing force, burnishing speed and feed rate on the surface roughness and microhardness of an AZ91D magnesium alloy using different artificial neural network models (i.e. the function fitting neural network (FITNET), generalized regression neural network (GRNN), cascade-forward neural network (CFNN) and feed-forward neural network (FFNN). A total of 1440 different estimates were made by means of ANN methods using different parameters. The best average performance results for surface roughness and microhardness are obtained by the FITNET model (i.e. mean square error (MSE): 0.00060608, mean absolute error (MAE): 0.01556013, multiple correlation coefficient (R): 0.99944545), using the Bayesian regularization process (trainbr)). The FITNET model is followed by the FFNN (i.e. MAE: 0.01707086, MSE: 0.00072907, R: 0.99932069) and CFNN (i.e. MAE: 0.01759166, MSE: 0.00080154, R: 0.99924845) models with very small differences, respectively. The GRNN model has noted worse estimation results (i.e. MSE: 0.00198232, MAE: 0.02973829, R: 0.99900783) as compared with the other models. As a result, MSE, MAE and R values show that it is possible to predict the surface roughness and microhardness results of the burnishing process with high accuracy using ANN models.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 4; 729-739
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies