Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Autoregressive integrated moving average (ARIMA) models" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Wykorzystanie metody moving block bootstrap w prognozowaniu szeregów czasowych z wahaniami okresowymi
The Use of the Moving Block Bootstrap Method in Periodic Time Series Forecasting
Autorzy:
Kończak, Grzegorz
Miłek, Michał
Powiązania:
https://bibliotekanauki.pl/articles/586452.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Analiza szeregów czasowych
Metody statystyczne
Modele ARIMA
Prognozowanie matematyczne
Szeregi czasowe
Autoregressive integrated moving average (ARIMA) models
Mathematical forecasting
Statistical methods
Time-series
Time-series analysis
Opis:
The aim of the analysis of the time series is, among others, to facilitate the formulation of prognosis. The basis for the inference of the future variables are their future realizations. There are various methods used in time series forecasting, such as for example naïve method, Holt-Winters models, ARIMA models and various simulation methods. One of the most popular and widely used simulation method in statistical research is the bootstrap method proposed by B. Efron. It is usually applied in measuring the estimates of the variance and testing the hypotheses in cases when the distribution of the test statistic is unknown. This method does not require for the selected samples to be from the standard normal distribution population. Due to the construction of the random samples in this method, there is usually no possibility to directly apply it in the analysis of the periodic time series. In the literature written on this subject, there are the proposals to introduce some modifications to the bootstrap method that would provide the possibility to conduct such analyses. One of such methods is the moving block bootstrap. In the present essay, we will present the proposal to apply this method to create the confidential intervals for the periodic time series forecasts. The results gathered by applying that method are compared with the results obtained via the classic construction of the confidential intervals for the forecasts and on the confidential intervals based on ARIMA models.
Źródło:
Studia Ekonomiczne; 2014, 203; 91-100
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Best Time Series In-sample Model for Forecasting Nigeria Exchange Rate
Autorzy:
Gaddafi, Adamu Babali
Akpensuen, Shiaondo Henry
Shitu, Abdulrazaq Ahmed
Malle, Ahmad Atiku
Adamu, Muhammed
Bukar, Muhammad Goni
Powiązania:
https://bibliotekanauki.pl/articles/1031300.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
ARIMA
Autoregressive Integrated Moving Average Model
Autoregressive Moving Average Model
Autoregressive models
Box-Jenkins Methodology
CBN
Exchange rate
Model
Moving Average Models
Nigeria
Opis:
In this work we considered data on official Nigeria exchange rates (Naira to British Pound sterling) from January 2003 to December 2019. Four competing models ARIMA (1, 1, 1), ARIMA (2, 1, 1), ARIMA (1, 1, 0) and ARIMA (1, 1, 2) were identified for the exchange rates series. Diagnostic analysis revealed that all the competing models adequately represent the exchange rate series. However, on the basis of out-of-sample model selection and evaluation ARIMA (1, 1, 1) was selected as the optimal model with minimum information criteria for the exchange rate series. A 24 months forecast indicates that the Naira will continue to depreciate. The policy implication of our study is that the Central Bank of Nigeria (CBN), should devalue the Naira in order to not only re-establish exchange rate stability but also encourage local manufacturing and encourage foreign capital inflows.
Źródło:
World Scientific News; 2021, 151; 45-63
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies