Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "support vector machine" wg kryterium: Temat


Tytuł:
How To Construct Support Vector Machines Without Breaching Privacy
Autorzy:
Zhan, J.
Chang, L.
Matwin, S.
Powiązania:
https://bibliotekanauki.pl/articles/92993.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
privacy
security
support vector machine (SVM)
Opis:
This paper addresses the problem of data sharing among multiple parties in the following scenario: without disclosing their private data to each other, multiple parties, each having a private data set, want to collaboratively construct support vector machines using a linear, polynomial or sigmoid kernel function. To tackle this problem, we develop a secure protocol for multiple parties to conduct the desired computation. In our solution, multiple parties use homomorphic encryption and digital envelope techniques to exchange the data while keeping it private. All the parties are treated symmetrically: they all participate in the encryption and in the computation involved in learning support vector machines.
Źródło:
Studia Informatica : systems and information technology; 2006, 1(7); 233-244
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling and optimization of activated carbon carbonization process based on support vector machine
Autorzy:
Liu, Gangyang
Zhang, Chunlong
Dou, Dongyang
Wei, Yinghua
Powiązania:
https://bibliotekanauki.pl/articles/1448262.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
carbonization process
optimization
modeling
support vector machine
Opis:
Product prediction and process parameter optimization in the production process of activated carbon are very important for production. It can stabilize product quality and improve the economic efficiency of enterprises. In this paper, three process parameters of a carbonization furnace, namely feeding rate, rotation speed, and carbonization temperature, were adopted to build a quality optimization model for carbonized materials. First, an orthogonal test was designed to obtain the preliminary relationship between the process parameters and the quality indicators of a carbonized material and prepare data for modeling. Then, an improved SVR model was developed to establish the relationship between product quality indicators and process parameters. Finally, through the singlefactor experiments and the Monte Carlo method, the process parameters affecting the quality of a carbonized material were determined and optimized. This showed that a high-quality carbonized material could be obtained with a smaller feeding rate, larger rotation speed, and higher carbonization furnace temperature. The quality of activated carbon reached its maximum when the feeding rate was 1.0 t/h, the rotation speed was 90 r/h, and the temperature was 836°C. It can effectively improve the quality of carbonized materials.
Źródło:
Physicochemical Problems of Mineral Processing; 2021, 57, 2; 131-143
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Issledovanie ispolʹzovaniâ fuzii peremennyh v processe primeneniâ metoda opornyh vektorov v diagnostic
Autorzy:
Jegorowa, Albina
Górski, Jarosław
Kurek, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/2200172.pdf
Data publikacji:
2020
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
diagnostics
tool wear
support vector machine
chipboard
drill
Opis:
Исследование использования фузии переменных в процессе применения метода опорных векторов в диагностике сверл во время обработки древесностружечной плиты. Целью работы было определение возможности слияния т.е. фузии переменных, определенных для диагностики режущего инструмента используемого во время сверления древесностружечной ламинированной плиты, в основе которого лежит метод опорных векторов. В результате применения данного метода удалось редуцировать набор переменных на 92,75 % к первоначальному, что позволило улучшить показатель точности классификации во время мониторинга за состоянием режущего инструмента, сократить время на тренировку системы и улучшить показатели генерализации. Проведенные исследования показали, что данный метод работает и значительно улучшает качество классификации неинвазивного метода диагностики сверл. Точность классификации составила 85,10%. Система не допускает ошибок между крайними классами. Количество ошибок между соседними классами незначительно.
Badanie wykorzystania fuzji cech diagnostycznych stosowanych podczas diagnostyki stopnia zużycia wierteł w trakcie obróbki płyt wiórowych laminowanych, z wykorzystaniem algorytmu maszyny wektorów wspierających. Celem pracy było określenie możliwości zastosowania fuzji zmiennych zdefiniowanych do diagnostyki narzędzia skrawającego stosowanego w trakcie wiercenia płyt wiórowych laminowanych, w oparciu o algorytm maszyny wektorów wspierających (SVM). W wyniku zastosowania tej metody możliwe było zmniejszenie zbioru zmiennych o 92,75%, do zbioru pierwotnego, co pozwoliło na poprawę dokładności klasyfikacji podczas monitorowania stanu narzędzi skrawających, skrócenie czasu uczenia oraz poprawę generalizacji. Badania wykazały, że metoda ta jest skuteczna, znacząco poprawiająca jakość klasyfikacji nieinwazyjnej diagnostyki wierteł. Dokładność klasyfikacji wyniosła 85,10%, a ponadto system nie dopuszcza do błędów pomiędzy klasami ekstremalnymi. Liczba błędów pomiędzy sąsiednimi klasami jest nieistotna.
Źródło:
Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology; 2020, 110; 97--102
1898-5912
Pojawia się w:
Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of electromagnetic filtration efficiency using least squares support vector model
Autorzy:
Yuceer, M.
Yildiz, Z.
Abbasov, T.
Powiązania:
https://bibliotekanauki.pl/articles/110758.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
electromagnetic filtration
disperse systems
support vector machine (SVM)
Opis:
The present study aims to apply a least squares support vector model (LS–SVM) for predicting cleaning efficiency of an electromagnetic filtration process, also called quality factor, in order to remove corrosion particles (rust) of low concentrations from water media. For this purpose, three statistical parameters: correlation coefficient, root mean squared error and mean absolute percentage error were calculated for evaluating the performance of the LS–SVM model. It was found that the developed LS–SVM can be used to predict the effectiveness of electromagnetic filtration process.
Źródło:
Physicochemical Problems of Mineral Processing; 2015, 51, 1; 173-180
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance analysis of rough set–based hybrid classification systems in the case of missing values
Autorzy:
Nowicki, Robert K.
Seliga, Robert
Żelasko, Dariusz
Hayashi, Yoichi
Powiązania:
https://bibliotekanauki.pl/articles/2031102.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
rough sets
support vector machine
fuzzy system
neural networks
Opis:
The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 4; 307-318
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of new method of initialisation of neuro - fuzzy systems with support vector machines
Analiza nowej metody inicjalizacji systemów neuronowo – rozmytych z wykorzystaniem maszyn wektorów wspierających
Autorzy:
Simiński, K.
Powiązania:
https://bibliotekanauki.pl/articles/375675.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
support vector machine (SVM)
neuro-fuzzy systems
classification
regression
Opis:
The correspondence between support vector machines and neuro-fuzzy systems is very interesting. The full equivalence for classification and partial for regression has been formally shown. The equivalence has very interesting implication. It is a base for a new method of initialization of neurofuzzy systems, ie. for creating of fuzzy rule base. The commonly used methods are based on reversion of item: the premises of fuzzy rules split input domain into region, thus premises of fuzzy rules can be elaborated by partition of input domain. This leads to three main classes of partition of input domain. The above mentioned equivalence results in new way of creating the rule base. Now the input domain is not partitioned, but the premises of fuzzy rules are extracted from support vector. The objective of the paper is to examine the advantages and disadvantages of this new method for creation of fuzzy rule bases for neuro-fuzzy systems.
Związek pomiedzy maszynami wektorów podpierajacych i systemami neuronoworozmytymi jest bardzo interesujący. Została wykazana pełna odpowiedniość między tymi systemami dla klasyfikacji i częściowa dla regresji. Odpowiedność ta ma bardzo ważną konsekwencję. Jest podstawa do opracowania nowego sposobu tworzenia bazy reguł dla systemu neuronowo-rozmytego. Dotychczasowe metody opieraja się na podziale przestrzeni wejściowej, a następnie przekształcenia tak powstałych regionów w przesłanki rozmytych reguł. Tutaj możliwe jest przekształcanie wektorów wspierających na przesłanki reguł rozmytych. Celem artykułu jest przebadanie możliwości stosowania takiego podejścia do inicjalizacji systemów neuronowo-rozmytych. Eksperymenty wykazują dosć istotną wadę tego podejścia. W jego wyniku powstają bardzo liczne zbiory reguł rozmytych, co zupełnie przeczy idei interpretowalności wiedzy w systemach neuronowo-rozmytych. Manipulacja pewnymi parametrami umożliwia zmiejszenie liczby reguł, jednak manipulacja ta jest trudna i wymaga wielu prób. Drugą dość istotna wadą jest wyraźnie wyższy błąd wypracowywany przez systemy inicjalizowane przez SVM w porównaniu do systemów, których bazy reguł tworzone sa˛ poprzez podział przestrzeni wejściowej.
Źródło:
Theoretical and Applied Informatics; 2012, 24, 3; 243-254
1896-5334
Pojawia się w:
Theoretical and Applied Informatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Classification Method Related to Respiratory Disorder Events Based on Acoustical Analysis of Snoring
Autorzy:
Wang, Can
Peng, Jianxin
Zhang, Xiaowen
Powiązania:
https://bibliotekanauki.pl/articles/176601.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
acoustical analysis
feature extraction
support vector machine
snoring sound
Opis:
Acoustical analysis of snoring provides a new approach for the diagnosis of obstructive sleep apnea hypopnea syndrome (OSAHS). A classification method is presented based on respiratory disorder events to predict the apnea-hypopnea index (AHI) of OSAHS patients. The acoustical features of snoring were extracted from a full night’s recording of 6 OSAHS patients, and regular snoring sounds and snoring sounds related to respiratory disorder events were classified using a support vector machine (SVM) method. The mean recognition rate for simple snoring sounds and snoring sounds related to respiratory disorder events is more than 91.14% by using the grid search, a genetic algorithm and particle swarm optimization methods. The predicted AHI from the present study has a high correlation with the AHI from polysomnography and the correlation coefficient is 0.976. These results demonstrate that the proposed method can classify the snoring sounds of OSAHS patients and can be used to provide guidance for diagnosis of OSAHS.
Źródło:
Archives of Acoustics; 2020, 45, 1; 141-151
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid feature selection and support vector machine framework for predicting maintenance failures
Autorzy:
Tarik, Mouna
Mniai, Ayoub
Jebari, Khalid
Powiązania:
https://bibliotekanauki.pl/articles/30148252.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
predictive maintenance
machine learning
features selection
SMOTE-Tomek
Support Vector Machine
Opis:
The main aim of predictive maintenance is to minimize downtime, failure risks and maintenance costs in manufacturing systems. Over the past few years, machine learning methods gained ground with diverse and successful applications in the area of predictive maintenance. This study shows that performing preprocessing techniques such as over¬sampling and feature selection for failure prediction is promising. For instance, to handle imbalanced data, the SMOTE-Tomek method is used. For feature selection, three different methods can be applied: Recursive Feature Elimination, Random Forest and Variance Threshold. The data considered in this paper for simulation are used in literature. They are used to measure aircraft engine sensors to predict engine failures, while the prediction algorithm used is a Support Vector Machine. The results show that classification accuracy can be significantly boosted by using the preprocessing techniques.
Źródło:
Applied Computer Science; 2023, 19, 2; 112-124
1895-3735
2353-6977
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble machine learning methods to predict the balancing of ayurvedic constituents in the human body
Autorzy:
Rajasekar, Vani
Krishnamoorthi, Sathya
Saracevic, Muzafer
Pepic, Dzenis
Zajmovic, Mahir
Zogic, Haris
Powiązania:
https://bibliotekanauki.pl/articles/27312840.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
machine learning
artificial neural networks
diagnose
Ayurveda constituent
support vector machine
Opis:
In this paper, we demonstrate the result of certain machine-learning methods like support vector machine (SVM), naive Bayes (NB), decision tree (DT), k-nearest neighbor (KNN), artificial neural network (ANN), and AdaBoost algorithms for various performance characteristics to predict human body constituencies. Ayurveda-dosha studies have been used for a long time, but the quantitative reliability measurement of these diagnostic methods still lags. The careful and appropriate analysis leads to an effective treatment to predict human body constituencies. From an observation of the results, it is shown that the AdaBoost algorithm with hyperparameter tuning provides enhanced accuracy and recall (0.97), precision and F-score (0.96), and lower RSME values (0.64). The experimental results reveal that the improved model (which is based on ensemble-learning methods) significantly outperforms traditional methods. According to the findings, advancements in the proposed algorithms could give machine learning a promising future.
Źródło:
Computer Science; 2022, 23 (1); 117--132
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fast near-infrared palmprint recognition using nonnegative matrix factorization extreme learning machine
Autorzy:
Xu, X.
Zhang, X.
Lu, L.
Deng, W.
Zuo, K
Powiązania:
https://bibliotekanauki.pl/articles/173572.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
extreme learning machine
palmprint recognition
superior speed
support vector machine (SVM)
Opis:
Support vector machine and artificial neural network are widely used in classification applications. Extreme learning machine (ELM) is a novel and efficient learning algorithm based on the generalized single hidden layer feed forward networks, which performs well in classification applications. The research results have shown the superiority of ELM with the existing classical algorithms: support vector machine (SVM) and back propagation neural network. In this study, we firstly propose a novel nonnegative matrix factorization extreme learning machine (NMFELM) to improve the performance of standard ELM method. Then we propose a novel near-infrared palmprint recognition approach based on NMFELM classifier. As the test data, we use the near-infrared palmprint database provided by Hong Kong Polytechnic University. The experimental results demonstrate that the proposed NMFELM method outperforms the standard ELM- and SVM-based methods.
Źródło:
Optica Applicata; 2014, 44, 2; 285-298
0078-5466
1899-7015
Pojawia się w:
Optica Applicata
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Faults Classification Of Power Electronic Circuits Based On A Support Vector Data Description Method
Autorzy:
Cui, J.
Powiązania:
https://bibliotekanauki.pl/articles/220938.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
power electronic circuits
fault classification
support vector data description
support vector machine (SVM)
Opis:
Power electronic circuits (PECs) are prone to various failures, whose classification is of paramount importance. This paper presents a data-driven based fault diagnosis technique, which employs a support vector data description (SVDD) method to perform fault classification of PECs. In the presented method, fault signals (e.g. currents, voltages, etc.) are collected from accessible nodes of circuits, and then signal processing techniques (e.g. Fourier analysis, wavelet transform, etc.) are adopted to extract feature samples, which are subsequently used to perform offline machine learning. Finally, the SVDD classifier is used to implement fault classification task. However, in some cases, the conventional SVDD cannot achieve good classification performance, because this classifier may generate some so-called refusal areas (RAs), and in our design these RAs are resolved with the one-against-one support vector machine (SVM) classifier. The obtained experiment results from simulated and actual circuits demonstrate that the improved SVDD has a classification performance close to the conventional one-against-one SVM, and can be applied to fault classification of PECs in practice.
Źródło:
Metrology and Measurement Systems; 2015, 22, 2; 205-220
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implementation of Bilinear Separation algorithm as a classification method for SSVEP-based brain-computer interface
Autorzy:
Jukiewicz, M.
Cysewska-Sobusiak, A.
Powiązania:
https://bibliotekanauki.pl/articles/114357.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
brain-computer interface
SSVEP
bilinear separation
support vector machine (SVM)
Opis:
: The aim of this study was to create a two-class brain-computer interface. As in the case of research on SSVEP stimuli flashing at different frequencies were presented to four subjects. Optimal SSVEP recognition results can be obtained from electrodes: O1, O2 and Oz. In this work SVM classifier with Bilinear Separation algorithm have been compared. The best result in the offline tests using Bilinear Separation was: average accuracy of stimuli recognition 93% and ITR 33.1 bit/min, SVM: 90% and 32.8 bit/min.
Źródło:
Measurement Automation Monitoring; 2015, 61, 2; 51-53
2450-2855
Pojawia się w:
Measurement Automation Monitoring
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Two-stage classification approach for human detection in camera video in bulk ports
Autorzy:
Mi, C.
Zhang, Z.
He, X.
Huang, Y.
Mi, W.
Powiązania:
https://bibliotekanauki.pl/articles/259499.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
Human Detection
Histograms of Oriented Gradients
Support Vector Machine
classification
Opis:
With the development of automation in ports, the video surveillance systems with automated human detection begun to be applied in open-air handling operation areas for safety and security. The accuracy of traditional human detection based on the video camera is not high enough to meet the requirements of operation surveillance. One of the key reasons is that Histograms of Oriented Gradients (HOG) features of the human body will show great different between front & back standing (F&B) and side standing (Side) human body. Therefore, the final training for classifier will only gain a few useful specific features which have contribution to classification and are insufficient to support effective classification, while using the HOG features directly extracted by the samples from different human postures. This paper proposes a two-stage classification method to improve the accuracy of human detection. In the first stage, during preprocessing classification, images is mainly divided into possible F&B human body and not F&B human body, and then they were put into the second-stage classification among side human and non-human recognition. The experimental results in Tianjin port show that the two-stage classifier can improve the classification accuracy of human detection obviously.
Źródło:
Polish Maritime Research; 2015, S 1; 163-170
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine learning methods for diagnosing the causes of die-casting defects
Autorzy:
Okuniewska, Alicja
Perzyk, Marcin
Kozłowski, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/29519775.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
fault diagnosis
machine learning tools
neural network
classification trees
support vector machine
Opis:
The research was focused on analyzing the causes of high-pressure die-casting defects, more specifically on casting leakage, which is considered perhaps the most important and common defect. The real data used for modelling was obtained from a high-pressure die-casting foundry that manufactures aluminum cylinder blocks for the world’s leading automotive brands. This paper compares and summarizes the results of applying advanced modelling using artificial neural networks, regression trees, and support vector machines methods to select artificial neural networks as the most effective method to perform a multidimensional optimization of process parameters to diagnose the causes of die-casting defects and to indicate the future research scope in this area. The developed system enables the prediction of the level of defects in castings with satisfactory accuracy and is therefore a highly relevant reference for process engineers of high-pressure foundries. This article indicates exactly which process parameters significantly influence the formation of a defect in a casting.
Źródło:
Computer Methods in Materials Science; 2023, 23, 2; 45-56
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Daily Suspended Sediment Prediction Using Seasonal Time Series and Artificial Intelligence Techniques
Autorzy:
Üneş, Fatih
Taşar, Bestami
Demirci, Mustafa
Zelenakova, Martina
Kaya, Yunus Ziya
Varçin, Hakan
Powiązania:
https://bibliotekanauki.pl/articles/2069941.pdf
Data publikacji:
2021
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
prediction
neuro-fuzzy
sediment rating curve
support vector machine
suspended sediment
Opis:
Estimating the amount of suspended sediment in rivers correctly is important due to the adverse impacts encountered during the design and maintenance of hydraulic structures such as dams, regulators, water channels and bridges. The sediment concentration and discharge currents have usually complex relationship, especially on long term scales, which can lead to high uncertainties in load estimates for certain components. In this paper, with several data-driven methods, including two types of perceptron support vector machines with radial basis function kernel (SVM-RBF), and poly kernel learning algorithms (SVM-PK), Library SVM (LibSVM), adaptive neuro-fuzzy (NF) and statistical approaches such as sediment rating curves (SRC), multi linear regression (MLR) are used for forecasting daily suspended sediment concentration from daily temperature of water and streamflow in the river. Daily data are measured at Augusta station by the US Geological Survey. 15 different input combinations (1 to 15) were used for SVM-PK, SVM-RBF, LibSVM, NF and MLR model studies. All approaches are compared to each other according to three statistical criteria; mean absolute errors (MAE), root mean square errors (RMSE) and correlation coefficient (R). Of the applied linear and nonlinear methods, LibSVM and NF have good results, but LibSVM generates a slightly better fit under whole daily sediment values.
Źródło:
Rocznik Ochrona Środowiska; 2021, 23; 117--137
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies