Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Hybrid feature selection and support vector machine framework for predicting maintenance failures

Tytuł:
Hybrid feature selection and support vector machine framework for predicting maintenance failures
Autorzy:
Tarik, Mouna
Mniai, Ayoub
Jebari, Khalid
Powiązania:
https://bibliotekanauki.pl/articles/30148252.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
predictive maintenance
machine learning
features selection
SMOTE-Tomek
Support Vector Machine
Źródło:
Applied Computer Science; 2023, 19, 2; 112-124
1895-3735
2353-6977
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The main aim of predictive maintenance is to minimize downtime, failure risks and maintenance costs in manufacturing systems. Over the past few years, machine learning methods gained ground with diverse and successful applications in the area of predictive maintenance. This study shows that performing preprocessing techniques such as over¬sampling and feature selection for failure prediction is promising. For instance, to handle imbalanced data, the SMOTE-Tomek method is used. For feature selection, three different methods can be applied: Recursive Feature Elimination, Random Forest and Variance Threshold. The data considered in this paper for simulation are used in literature. They are used to measure aircraft engine sensors to predict engine failures, while the prediction algorithm used is a Support Vector Machine. The results show that classification accuracy can be significantly boosted by using the preprocessing techniques.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies