- Tytuł:
- The paired-domination and the upper paired-domination numbers of graphs
- Autorzy:
- Ulatowski, W.
- Powiązania:
- https://bibliotekanauki.pl/articles/255585.pdf
- Data publikacji:
- 2015
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
paired-domination
paired-domination number
upper paired-domination number - Opis:
- In this paper we continue the study of paired-domination in graphs. A paired-dominating set, abbreviated PDS, of a graph G with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of G, denoted by γP(G), is the minimum cardinality of a PDS of G. The upper paired-domination number of G, denoted by ΓP(G), is the maximum cardinality of a minimal PDS of G. Let G be a connected graph of order n ≥ 3. Haynes and Slater in [Paired-domination in graphs, Networks 32 (1998), 199-206], showed that γ P(G) ≤ n— 1 and they determine the extremal graphs G achieving this bound. In this paper we obtain analogous results for ΓP(G). Dorbec, Henning and McCoy in [Upper total domination versus upper paired-domination, Questiones Mathematicae 30 (2007), 1-12] determine Γp(Pn), instead in this paper we determine Γp(Cn). Moreover, we describe some families of graphs G for which the equality γP(G) = ΓP(G) holds.
- Źródło:
-
Opuscula Mathematica; 2015, 35, 1; 127-135
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki