Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Graphs With Large Semipaired Domination Number

Tytuł:
Graphs With Large Semipaired Domination Number
Autorzy:
Haynes, Teresa W.
Henning, Michael A.
Powiązania:
https://bibliotekanauki.pl/articles/31343332.pdf
Data publikacji:
2019-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
paired-domination
semipaired domination
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 3; 659-671
2083-5892
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Let $G$ be a graph with vertex set $V$ and no isolated vertices. A subset $ S \subseteq V $ is a semipaired dominating set of $G$ if every vertex in $ V \backslash S $ is adjacent to a vertex in $S$ and $S$ can be partitioned into two element subsets such that the vertices in each subset are at most distance two apart. The semipaired domination number $ \gamma_{pr2}(G) $ is the minimum cardinality of a semipaired dominating set of $G$. We show that if $G$ is a connected graph $G$ of order $ n \ge 3 $, then \( \gamma_{pr2} (G) \le \tfrac{2}{3} n \), and we characterize the extremal graphs achieving equality in the bound.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies