Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Słota, Damian" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Families of Increasing Sequences Possessing the Harmonic Series Property
Autorzy:
Wituła, Roman
Hetmaniok, Edyta
Słota, Damian
Powiązania:
https://bibliotekanauki.pl/articles/972271.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Sierpiński family
harmonic series property
Opis:
We say that family \( \mathcal{W} \ne \emptyset \) of increasing sequences of positive real numbers possesses the harmonic series property (HSP – for the shortness of notation) if for any finite sequence of elements of \( \mathcal{W} \), i.e. for any \( k \in N \), \( \{ a_n^{(i)} \}_{n=1}^\infty \in \mathcal{W} \), \( i = 1, ..., k \), we have $$ \sum_{n=1}^\infty ( a_n^{(1)} + a_n^{(2)} + ... a_n^{(k)} )^{-1} = \infty $$ (the sequences \( \{ a_n^{(i)} \}_{n=1}^\infty \) and \( \{ a_n^{(j)} \}_{n=1}^\infty \) for different indices \( i \) and \( j \) can be the same). We prove in this paper that any maximal, with respect to inclusion, subset of \( N \) – the family of all increasing sequences of positive integers – possessing the harmonic series property has the cardinality of the continuum. Moreover, we prove that for any countable (infinite) set \( \mathcal{W} \subset \mathcal{N} \) there exists an "orthogonal" family \( \mathcal{W}^\perp \subset \mathcal{N} \) such that a) card \( \mathcal{W}^\perp = \mathcal{c} \), b) \( ( \forall \{ a_n \}, \{ b_n \} \in \mathcal{W}^\perp ) ( \{ a_n \} \ne \{ b_n \} \Rightarrow \sum ( a_n + b_n )^{-1} < \infty ) \) (this condition is a reason for using the word "orthogonal" – the value "0" or "≠ 0" of the scalar product is replaced here by the convergence or divergence, respectively, of the series), c) \( ( \forall \{ a_n \} \in \mathcal{W}^\perp ) \) (the family \( \mathcal{W} \cup \{ \{ a_n \}_{n=1}^\infty \} \) possesses the harmonic series property). All facts are proved constructively, by using the modified version of the classical Sierpiński family of increasing sequences having the cardinality of the continuum.
Źródło:
Acta Universitatis Lodziensis. Folia Mathematica; 2013, 18; 3-10
2450-7652
Pojawia się w:
Acta Universitatis Lodziensis. Folia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Matrix methods in evaluation of integrals
Autorzy:
Wituła, Roman
Słota, Damian
Matlak, Jarosław
Różański, Michał
Powiązania:
https://bibliotekanauki.pl/articles/122939.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
matrix methods
evaluation of integrals
central binomial coefficients
identities for finite sums
metoda macierzowa
współczynnik dwumianowy
metoda oceny całek
Opis:
The method of evaluating the integrals through use of the matrix inversion, presented here, was introduced by J.W. Rogers and then generalized by Matlak, Słota and Wituła. This method is still developed and one of its other possible applications is presented in this paper. This application concerns a new way of evaluating the integral ʃ sec2n+1 xdx on the basis of the discussed method. Additionally, many other applications of the obtained original recursive formula for this type of integral are given here. Some of them are used to generate the interesting identities for inverses of the central binomial coefficients and the trigonometric limits. The historical view is also presented as well as the connections between the received and previously known identities.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 103-112
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Matrix methods in evaluation of integrals
Autorzy:
Wituła, Roman
Słota, Damian
Matlak, Jarosław
Różański, Michał
Powiązania:
https://bibliotekanauki.pl/articles/1839805.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
matrix methods
evaluation of integrals
central binomial coefficients
identities for finite sums
metoda macierzowa
współczynnik dwumianowy
metoda oceny całek
Opis:
The method of evaluating the integrals through use of the matrix inversion, presented here, was introduced by J.W. Rogers and then generalized by Matlak, Słota and Wituła. This method is still developed and one of its other possible applications is presented in this paper. This application concerns a new way of evaluating the integral ʃ sec2n+1 xdx on the basis of the discussed method. Additionally, many other applications of the obtained original recursive formula for this type of integral are given here. Some of them are used to generate the interesting identities for inverses of the central binomial coefficients and the trigonometric limits. The historical view is also presented as well as the connections between the received and previously known identities.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 103-112
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies